ENGINEERING SERVICES REPORT

FOR A

PLANNING PROPOSAL FOR RESIDENTIAL DEVELOPMENT AND ASSOCIATED WORKS

At 68 Rankin Drive Bangalow NSW 2479

Upon Land Titles Lot 261 DP 1262316 & Lot 11 DP 807867

> Date: June 2023 (Rev A)

BLANK PAGE

(Double Sided Printing)

Table of Contents

1	l	EXECUTIVE SUMMARY	1
2]	INTRODUCTION	4
	2.1	Specific Proposal Details	5
	2.2	Report Reference Documents	6
3]	ROAD LAYOUT REQUIREMENTS	7
	3.1	Road Long Section Gradients	8
	3.2	Pathways	8
4	0	STORMWATER MANAGEMENT	9
	4.1	Stormwater Treatment Matters	9
	4.2	Stormwater Quantity Matters	11
5	1	WATER AND SEWER CONNECTIONS	13
	5.1	Water Reticulation Matters	13
	5.2	Sewer Reticulation Matters	14
	5.3	Rous Water Main Relocation	14
6	l	EARTHWORKS AND GEOTECHNICAL MATTERS	15
7	l	FLOODING MATTERS	16
8	(COMPLIANCE SUMMARY OF PROPOSAL	17
7	1	APPENDICES	18
	Арр	endix 1 Engineering Concept Plans (By SDS Civil – 5 Drgs x A3)	18
	Арр	endix 2 Broadscale Geotechnical Investigation Report (By Geotech Investigations Pty Ltd)	18
	Арр	endix 3 Hydraulic Assessment Report (By Floodworks)	18

BLANK PAGE

(Double Sided Printing)

1 EXECUTIVE SUMMARY

This Engineering Services Report is for a planning proposal to create a residential development 68 Rankin Drive, Bangalow.

The planning proposal consists of two landholdings, Lot 261 DP 1262316 (2.332ha) and Lot 11 DP 807867 (1.682ha). The subject lands already have part R2 Low Density Residential Zoning being an area of 1.033ha.

The planning proposal lands have an existing road frontage to local collector road, Rankin Drive. Rankin Drive is a 8m seal road with kerb and gutter on both sides.

An indicative residential development layout has been prepared to assess the infrastructure servicing requirements of the proposal. It is anticipated that the land could service 18 residential lots and 3 small medium density residential lots.

The site would be serviced via a new local street that would be proposed to loop from existing Corlis Crescent (currently a road stub) and reconnect to Rankin Drive at a point approximately 95m east of Satinash Crescent. Preliminary designs of the new local street identify the road gradient would be up to 18% slope which is not uncommon with other local street gradients within the

local area (ie Barby Crescent and Ferguson Crescent). As the proposed new local street 'loop' alignment would connect to lands south of the subject site, a temporary culdesac arrangement would be required in the interim - pending construction timelines on the neighbouring lands.

A new 1.2m wide footpath would be constructed within the subdivision's new road corridor and the existing 2m wide shared path on Rankin Drive would be extended for the full frontage of the site.

Stormwater management for the lands has been assessed to determine the treatment train required to achieve compliant quality outcomes. This assessment was undertaken using MUSIC software. The required treatment train includes: residential rainwater reuse tanks + allotment bio-water gardens + Humceptor GPT device + 40m² bio-retention basin and 20m of grass swale. The pollutant reduction targets achieved were:

- 80% suspended solids
- 58% phosphorus
- 50% nitrogen
- 100% gross pollutants

Water connectivity would be to the existing mains located within Rankin Drive. Detail design investigation is

1

required as to the level of augmentation works required given the existing mains consist of both a pressurised and gravity fed network.

An existing 525 dia Rous Water trunk main will require relocation. This trunk main has been subject to a previous assessment relocation via DA10.2021.84.2 for a 4 lot subdivision upon the lands. The relocation of the 525mm dia trunk water main involves it being construction on a new alignment adjacent to an existing 300mm dia trunk water main that also crosses the site. These works will result in a combined 11m wide easement corridor as previously agreed in principal with Rous Water.

Gravity sewer connections for the development will require the installation of a sewer pump station. The indicative residential development layout has allocated 235m² for the pump station site and a rising main connection to the existing sewer network at the rear of 62 Rankin Drive. This connection point is proposed via existing sewer easements.

Preliminary geotechnical assessment of the site has been undertaken and found

the lands suitable for residential development subject to implementation of building controls. These building controls primarily relate to localised steeper lands where slopes are greater than 18° (>30%). In these locations, engineered structural retaining walls are required for any cut/fill proposals over 1m in height (ie not gravity walls) and the use of light weight or terraced housing forms.

A hydraulic assessment of the un-named creek which runs through the lower portion of the site has been undertaken. This assessment identified the 1% AEP (ie 100yr event) flood level to be RL47.5m. This level has been used within indicative layout plans as a boundary zone to exclude any residential dwelling footprints.

It is demonstrated that the planning proposal lands can safely and effectively comply with Byron Shire Council development policies. BLANK PAGE

(Double Sided Printing)

2 INTRODUCTION

This Engineering Services Report has been prepared to address civil engineering matters associated with the use of lands for the purpose of residential development at 68 Rankin Drive, Bangalow. The site is identified as Lot 261 DP 1262316 and Lot 11 DP 807867 and has collector road frontage to Rankin Drive and boundaries also adjoin with existing residential lands. The common boundary to the north of the site is with the road corridor known as Hinterland Way (ie old Pacific Highway). Refer *Figure 2.0 – Site Location*.

Figure 2.0 – Site Location (Source: SIXmaps.nsw.gov.au)

The subject land holding has an area of 4.014ha, being 2.332ha (Lot 261 DP 1262316) and 1.682ha (Lot 11 DP 807867). There are existing Rous Water easements through the site, one of 5m width and one of 10m width which diagonally traverse the land containing trunk watermains to the nearby water reservoir which also fronts Rankin Drive.

2.1 Specific Proposal Details

The indicative residential development pattern is primarily driven by the need to enable road connectivity through the site so as to provide an inter-connection to the existing Corlis Crescent intersection south of the site. Such connection provides a logical road and pedestrian linkage for the precinct. Infrastructure and development potential for the subject lands is summarised as:

Existing

- Lot 261 DP 1262316	2.332ha
- Lot 11 DP 807867	<u>1.682ha</u>
	4.014ha

Area of site with exist Zoned R2 Low Density Residential 1.033ha
 Portion of land at Lot Size Map 600m² (0.502ha)
 Portion of land at Lot Size Map 800m² (0.531ha)

- Rous Water Easements 5m wide and 10m wide traverse the site

- Water main 100dia within Rankin Drive frontage

- Gravity sewer main within Rankin Drive and sewer easement benefit available to network through neighboring southern Lot 262 DP 1262316

- Existing un-named watercourse runs through the eastern portion of the site inclusive of road culvert discharge from Hinterland Way.

- Registered stormwater easement benefit available through neighboring southern Lot 262 DP 1262316

- Existing council stormwater from Rankin Drive discharges onto the site at two locations

- Existing 20m APZ bushfire easement on western portion of the site, to be extinguished once dwellings are constructed.

Proposed

An indicative residential development upon the lands would enable:

-	Residential allotments	18 lots
-	Larger medium density allotments	3 lots
-	New 7m wide road pavement within 16m reserve	298m long
-	Drainage easements over existing stormwater pipes	Varies
-	Re-vegetation of buffer to un-named creek	10m wide
-	New stormwater treatments within drainage reserve	600m ²
-	New stormwater GPT	Humeceptor
-	New sewer pump station site	235m ²
-	Part allotment filling of gully adjacent to Rankin Drive	4m depth
-	New 1.2m footpath	298m long
-	New 2m shared footpath (Rankin Drive)	115m long

New telecommunication and electrical supply is proposed to be provided via existing networks from Rankin Drive and allocation has been considered within the indicative subdivision layout for a transformer site. The site is not affected by any existing overhead electrical supply lines.

2.2 **Report Reference Documents**

The preparation of this report has had regard to the following documents:

- Byron Shire Council DCP 2014 Chapter D6 Subdivision (April 2018) •
- Byron Shire Council DCP 2014 Chapter B4 Traffic Planning, Vehicle Parking, Circulation and Access (April 2018)
- Byron Shire Council NRLGM Handbook of Stormwater Drainage Design (2013)
- Byron Shire Council Comprehensive Guidelines For Stormwater Management (2014)
- Australian Standard AS2890.1 Parking Facilities Part 1: Off-street Car Parking (2004)
- Northern Rivers Local Government (NRLG) -Development Design Specification D1 Geometric Road Design (2018)

3 ROAD LAYOUT REQUIREMENTS

The access to the development would be from the existing collector road Rankin Drive via a proposed new road corridor. The new road corridor would be on an alignment that would ultimately facilitate a connection to the existing Corlis Crescent stub located south of the site. Refer to Figure 3.1 below. The new road would be of a local street classification in accordance with the NRLG standard, being a 7m wide pavement within a 16m wide road reserve.

Figure 3.1 – Road Network Linkage

To facilitate staged construction of this new local road link, a temporary culdesac turning head can either be constructed on Lot 261 (if northern linkage proceeds first) or conversely on Lot 262 (if southern linkage proceeds first).

The engineering infrastructure considerations for this planning proposal has been prepared on the basis that the northern linkage would occur first.

Refer to **Appendix 1** – **Engineering Concept Plans** for engineering layout plans as referenced within this report.

3.1 **Road Long Section Gradients**

The subject lands have significant slopes to which the new road linkage will have elevations ranging from RL94m to RL54m over a proposed road length of 298m. This averages out at 13.4% gradient, however when consideration of intersection sightline requirements (ie flat approach to intersection) and limiting disturbance to the existing Rous trunk watermains, sections of the new road will be required to be designed at a maximum 18% slope. Refer to engineering Drg 1910-SD - 04 Rev C: New Local Street Long Section within Appendix 1 for details. The indicative residential design layout has given consideration to maximising the road length (hence to reduce slope) by diagonally traversing the subject site and the ultimate design would seek dispensation from the desirable maximum gradient of 16% based upon the following:

The development location is within a known steeper landform area (a) of Bangalow to which this site will provide a logical infill of residential lands requiring a connection from Corlis Crescent to Rankin Drive. Given the constraint of connecting to an existing road, limited scope to vary levels.

The locality has existing nearby streets that have various road (b) sections that were built at greater than 16% slope and function satisfactorily, namely:

- (i) Barby Cresent 20%
- (ii) Ferguson Crescent 20%
- (iii) Corlis Crescent connector stub 19%
- (iv) Rankin Drive 17%

(c) As the new road will become a loop road, residential users have the option of how best to access (enter or leave) their property (ie via downhill or uphill) so as to minimise slope impacts on allotment entrances.

For traffic generation, intersection sight lines and other traffic related matters, please refer to the Traffic Impact Statement (April 2023) report that has been prepared for the development and submitted under separate cover.

3.2 **Pathways**

As documented within the Traffic Impact Statement (April 2023) report, the new local street road corridor will have a 1.2m wide footpath for the full length of its construction. Additionally, the existing 2m wide shared footpath in Rankin Drive will be extended for the full length of the developments frontage. Refer Figure 3.2 below.

Figure 3.2 – Proposed New Footpaths (Shown in BLUE)

4 STORMWATER MANAGEMENT

The development site has an area of 4ha of which 3.5ha will be treated on the site. Refer to engineering *Drg 1910-RZ-620: Indicative Stormwater Catchment* within **Appendix 1** for catchment details. The site has an average slope of 16%. There are existing road stormwater pipe outlets (x2) which discharge from Rankin Drive onto the site. A major culvert discharges from/under Hinterland Way into an un-named creek which traverses the eastern area of the site. This un-named creek will be subject to installing riparian buffer revegetation/plantings (10m wide) as documented by others.

4.1 Stormwater Treatment Matters

The indicative subdivision layout for the planning proposal has been modelled via MUSIC software to ensure consideration (ie sufficient size / location / quality compliance) to treatment of stormwater runoff can be effectively managed. With the site being steep in nature, a key element has been to maximise at source treatment via dwelling rainwater reuse (ie tanks) and also proposing water gardens (ie bio-retention areas) to be constructed on each allotment. Refer to Figure 4.1 for typical example. The installation/

location of the water gardens need to occur in conjunction with the dwelling earthwork design. In summary, it was found that the treatment train of using:

residential rainwater re-use tanks + allotment bio-water gardens + Humeceptor GPT (STC7) + End of Line 40m² bio-retention basin + 20m grass swale

would achieve a compliant stormwater discharge outcome. Modelling catchment details and the model configuration used were as follows:

	Impervious	Impervious	Impervious	Pervious			
Catchment No	Road	Roof (300m ⁻ per Lot)	Paths/Other	Urban Lands	Total		
	(m ²)	Roof (100m ² per Unit)	(m²)	(m ²)	(m ²)		
Α	665	2100	710	5125	8600		
В	1379	2700	1084	9037	14200		
С	70	600	100	5930	6700		
D	862	1300	200	1438	3800		
E	460	600	150	490	1700		
Sub-Totals	3436	7300	2244	22020	35000		

Catchment Details

Catchment No	No of Dwellings	Tanks (Litres) 5,000L per Dwelling 3,000L per Unit	Bio Water Garden (m ²) 8m ² per Dwelling 4m ² per Unit	Other Treatment Types
Α	7	35000	56	Nil
В	9	45000	72	Nil
С	2	10000	16	Nil
D	13 Units	39000	52	Nil
E	6 Units	18000	24	Nil
A and B A, B and D A, B and D			40	Humeceptor STC 7 End of Line Bio- Retention Basin 20m long x 4m Wide
Sub-Totals	18 + 19 Units	147000	260	Grass Swale

Stormwater Treatment Elements

Figure 4.1 – Example of Typical Water Garden

Figure 4.2 – MUSIC Model Network

The modelling demonstrated compliance with Councils pollutant reduction target as compared below:

Pollutant	BSC Target	MUSIC Output	Complies (Yes / No)
Total Suspended Solids	80%	80%	√ Yes
Total Phosphorus	45%	58%	√ Yes
Total Nitrogen	45%	50%	√ Yes
Gross Pollutants	70%	100%	√ Yes
Water Balance**	38.0 ML (Exist)	34.5 ML (Developed)	9% Volume Reduction

** No compliance level required

4.2 **Stormwater Quantity Matters**

The MUSIC modelling demonstrates a net 9% reduction in average annual runoff volume from the site which is due to 147m³ of storage via multiple rainwater tanks for reuse. A further 78m³ of attenuation storage capacity is also provided within the multiple water garden basins (ie 260m² x 0.3m extended depth) which is a by-product of achieving increase in infiltration performance.

The steep sloping nature of the site (ie 16%+) results in very short natural stormwater runoff travel times, which results in lessor changes in volume differences of stormwater runoff for varying surfacing types. Once the catchment becomes fully saturated (ie once initial soil / vegetation losses are absorbed), then runoff from steep catchments is very similar to that of an impervious catchment.

The Queensland Urban Drainage Manual (IPWEA 2016) provides engineering guidance as to estimating the initial sizing volume required for a detention basin in achieving predevelopment level discharges. Refer extract from Chapter 5.6 below. QUDM nominates an initial loss of 20mm for open bushland / short grass and 2mm for impervious surfaces, thereby there is a net increase of 18mm runoff (ie 20mm - 2mm) for the developments impervious areas.

5.6 Basin sizing and flood routing

5.6.1 Initial basin sizing

If the design objective of a detention basin is to limit peak discharges to pre-development levels. then a simple method for estimating the required volume of detention storage is to calculate the effective reduction in the site's 'initial loss' capabilities. This means determining the difference between the site's initial loss potential before and after the proposed development.

Extract: Chapter 5.6 Basin Sizing and Flood Routing (QUDM 2016)

As tabulated within previous Section 4.1 of this report, the developed catchment would generate an impervious area increase of:

 $3,463m^2$ (pavements) + 7,300m² (roofs) + 2,244m² (paths/other) = 13,007m²

hence QUDM net increase in volume required for detention = $13,007 \times 0.018 = 234m^3$.

This volume can be readily achieved via using 78m³ of extended depth storage within the water gardens and 157.5m³ of additional tank storage (ie 21 lots x 7,500L tanks). The final sizing details would be subject to a detailed computer runoff-routing model to accompany the development application for the subdivision.

The summary treatment train concept to achieve stormwater quality and quantity compliance is shown in following Figure 4.3.

Figure 4.3 – Proposed Stormwater Treatment Train

5 WATER AND SEWER CONNECTIONS

A search of Council DBYD records identifies that an existing 100mm diameter watermain runs along the Rankin Drive frontage and existing gravity sewer lines are present on the western portion of the site and an existing sewer easement enables connectivity to the existing gravity lines that service Rankin Drive dwellings.

5.1 Water Reticulation Matters

The existing water main in Rankin Drive consists of two asset configurations. The higher lands are serviced via a 100mm dia pressurised main (ie RL90m+) given the limited head pressure available due to the close proximity of existing residential lands adjacent to the Rankin Drive water reservoirs. A conventional gravity fed 100mm dia water main is also present within lower levels of Rankin Drive (ie below RL75m) to service those existing homes adjacent to the subject site.

Detail design investigation and hydraulic modelling will be required to ascertain the most appropriate servicing strategy utilising both the pressurised main and gravity fed main. Such modelling and determination of the level of augmentation works required would be assessed at the development application planning phase.

5.2 Sewer Reticulation Matters

There is an existing sewer gravity main on the western boundary of the subject lands, however given this is the elevated portion of the site it is of minimal gravity servicing potential. In early 2020, the creation of Lot 262 DP 1262316 included the registration of a sewer easement that enables a connection point between the planning proposal lands and the existing gravity sewer network at Lot 71 DP 1011009 (the manhole at the rear of 62 Rankin Drive). This connection point would enable a gravity service to 50% of the planning proposal lands, however this connection location would also be very suitable as a rising main discharge point. Refer to engineering Drg 1910-RZ-600: Indicative Sewer Layout within Appendix 1 for sewer servicing details. It is also noted that a similar sewer easement was created midway through the eastern portion of Lot 262 DP 126316 that could also provide a sewer rising main connection route. This alternative easement is significantly longer (approx 200m versus 45m) than the preferred connection at 62 Rankin Drive. Provision has been made within the layout for a 200m² pump station site.

5.3 **Rous Water Main Relocation**

There is an existing 525 dia Rous Water trunk main which traverses the site and has been the subject of previous assessment by Rous Water in association with a four (4) lot subdivision over the lands (refer to DA10.2021.84.2). The design solution was to relocate the 525 dia main within a similar alignment to the existing 300 dia main (that also traverses the property) and provide a wider 11m easement. This wider easement would also enable Rous Water other augmentation / upgrade works. Accordingly, this planning proposal has had strong regard to the requirements raised by Rous Water in past communications and keeps this new 'easement corridor' well removed from the primary residential development area. Refer to Figure 5.3 for past agreed details with Rous Water as to relocation of the 525 dia water trunk main.

Figure 5.3 – Consolidation of Rous Water Mains into Common Easement Corridor

6 EARTHWORKS AND GEOTECHNICAL MATTERS

A geotechnical investigation and landslip susceptibility assessment was undertaken by Geotech Investigations Pty Ltd (refer to **Appendix 2** – **Broadscale Geotechnical Investigation**) which included 11 test pits and 8 boreholes. Refer to Figure 6 below for an extract of the report boreholes and test pit locations.

Figure 6 – Extract of Site Plan

The geotechnical investigation identified that where slopes greater than 18° (ie >30%) then implementation of engineered retaining walls combined with stability assessment would be required (ie gravity walls not suitable). Such locations are shown in Figure 6.1 below and primarily affects Lots 5, 6, 7, 8 and 14. The implementation of using retaining structural walls would be required for cut/fil heights above 1m and implementing wide ranging mitigation measures as listed within Table 4 of the geotechnical report, particularly in these steeper sloped areas.

Figure 6.1 – Locations where slope gradient at >30%

There is an existing non-defined gully/depression that runs west to east across future Lot 15 and 16 which will require localised filling to improve land use and to contain the earthworks batter for the new entry loop road and associated intersection. Filling in this location would be from 1m to nominal 4m maximum depth and be undertaken in accordance with Level 1 earthworks supervision requirements. This filling won't occur until such time as the existing Rous Water trunk main is relocated clear of this filling work zone.

7 FLOODING MATTERS

The un-named creek is a 2nd order stream and discharges into Byron Creek at a location adjacent to the eastern end of the Bangalow Showground. A hydraulic assessment using XPSWMM software has been undertaken in June 2022 by Floodworks and a copy of the report is attached within **Appendix 3**. The findings of the assessment was that the 1% AEP water level was RL47.5m AHD. This flood level contour has been shown upon the engineering *Drg 1910-RZ-300: Indicative Subdivision Layout* within **Appendix 1** and no dwelling envelopes are shown within this flood inundation area.

8 COMPLIANCE SUMMARY OF PROPOSAL

This Engineering Services Report has had regard to assessing the infrastructure services and design compliance requirements of the Byron Shire Council development standards and has found that the indicative residential planning proposal is able to demonstrate that:

- (i) The subject lands can provide satisfactory road access and provide appropriate future road network linkage to neighbouring undeveloped lands;
- (ii) Stormwater management outcomes for the site can be satisfactorily catered for onsite and achieve compliant reductions in pollutant loads and attenuation controls;
- (iii) Geotechnical management of those lands steeper than 30% can be managed with conventional engineering design;
- (iv) Residential dwelling envelopes are not required upon 1% AEP lands;
- (v) The subject lands can be adequately serviced by water and sewer;
- (vi) Allowance has been made such that the subject lands can be adequately serviced by the existing electrical and telecommunications network.

7 APPENDICES

- Appendix 1 Engineering Concept Plans (By SDS Civil 5 Drgs x A3)
- Appendix 2 Broadscale Geotechnical Investigation Report (By Geotech Investigations Pty Ltd)
- Appendix 3 Hydraulic Assessment Report (By Floodworks)

Appendix 1

Engineering Concept Plans (by SDS Civil Enterprises)

Indicative Subdivision Layout Drg No 1910-RZ-300 Rev F: Indicative Sewer Layout Indicative Stormwater Layout Drg No 1910-RZ-600 Rev A: Drg No 1910-RZ-610 Rev A: Drg No 1910-RZ-620 Rev D: Indicative Stormwater Catchment New Local Street Longsection Drg No 1910-SD- 04 Rev C:

	Station Scale Horizontal 1:10	NATURAL	DESIGN	Depth	Datum R.L. 43.00	A LP 90.80 Rankin Drive Centreline	
	8 0.00 ≤ 4.00	90.80	90.80 90.68	+0.00		I.P. 90.68	
	ertic 8.50	90.67 89.94	90.62	-0.05			
	$\frac{10.00}{1.1}$	89.29	89.99	+1.02 +2.27 +3.07	=//-		
	25.00 30.00	86.17 86.79	89.37 89.06	+3.20	\mp		
	33.66 35.00	87.31 87.50	88.83 88.74	+1.52 +1.25	=		
1900 88.97 87.9 87.9 7.9 1900 88.95 110 1700 87.9 88.95 1.4 1710 87.9 89.95 1.4 1723 89.7 89.95 1.4 1723 89.7 1.4 1723 89.7 1.4 1723 89.7 1.4 1723 89.7 1.4 10000 71.0 7.4 10000 71.0 7.4 10000 71.0 7.4 10000 71.0 7.4 10000 71.0 1.4 10000 71.0 1.4 10000 71.0 1.5 10000 71.0 1.5 10000 71.0 1.0 10000 71.0 1.0 10000 71.0 1.0 10000 71.0 1.0 10000 71.0 1.0 10000 71.0 1.0 10000 71.0 1.0 10000 70.8 71.2 10000 70.8 70.2 10000 64.3 67.62 10000 64.3 67.62 10000	40.00 45.00	88.15 88.50	88.43 88.12	+0.28 -0.38			
1000 100	50.00 55.00	88.57 88.51	87.81	-0.76 -1.02			
1 1 <td>57.31 60.00</td> <td>88.35</td> <td>87.35 87.17</td> <td>-1.18</td> <td></td> <td></td> <td></td>	57.31 60.00	88.35	87.35 87.17	-1.18			
	70.00	87.66	86.32	-1.34			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	77.31	86 78	85.51	-1 45		<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	80.00	86.65	85.17	-1.48	\mp		
10000 44.08 3250 2.07 10002 44.08 3250 2.07 10002 44.08 3250 1.44 10002 44.08 1.04 10002 44.08 1.04 10002 44.08 1.04 10002 44.08 1.04 10002 7.05 1.04 10000 7.05 1.04 10000 7.05 1.04 10000 7.25 1.04 10000 7.25 1.04 10000 7.25 1.05 10000 7.25 1.05 10000 7.25 1.05 10000 7.25 1.05 10000 7.25 1.05 10000 7.25 1.05 10000 7.25 1.05 10000 7.25 1.05 10000 7.25 1.05 211.07 22.26 1.05 225.00 0.04 1.05 225.00 0.04 1.05 225.00 0.	07 31		82 50				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100.00 100.27	84.08 84.03	82.01 81.96	-2.07	1	×	
						Limit of Roadworks (DA2021/84)	
$1 \frac{1000}{1200} \frac{79.39}{1200} \frac{67.431}{1200} \frac{13.52}{1200} \frac{1000}{17.531} \frac{13.64}{14.53} \frac{13.52}{14.51} \frac{10.64}{15.51} \frac{13.51}{12.1} \frac{13.64}{12.53} \frac{13.64}{12.1} \frac{13.64}{12.$	119.33	80.07	78.53	-1.54			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	120.00	79.93	76.61	-1.52		Subj	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	135.00	76.51	75.71	-0.79		act Toi	
190.00 72.80 72.01 +0.21 192.00 72.80 71.21 +0.53 190.00 70.68 71.21 +0.53 190.00 70.68 71.21 +0.53 190.00 70.68 71.21 +0.53 190.00 70.68 71.21 +0.53 197.69 64.79 -0.96 -0.96 217.70 52.58 52.64 +0.96 225.00 50.40 -0.75 -0.10 225.00 55.87 57.70 +0.10 -0.27 283.00 55.87 55.87 -0.16 -0.16 283.00 55.87 55.87 -0.16 -0.16 283.00 55.87 55.87 -0.16 -0.16 283.00 55.87 55.87 -0.16 -0.16 283.00 56.51 -0.26 -0.16 -0.16 283.00 -0.16 -0.16 -0.16 -0.16 283.00 -0.16 -0.16 -0.16 -0.16 283.00 -0.26 -0.16 -0.16	140.00	75.35	74.81	-0.53		Plannir Plannir	
160.00 70.68 1/1.21 40.53 177.69 66.43 67.62 +1.19 -1.19 180.00 66.43 67.62 +1.19 -1.19 197.69 63.51 64.46 +0.96 -1.19 217.69 63.51 64.46 +0.96 -1.19 217.69 63.51 64.46 +0.96 -1.19 225.00 51.27 62.62 +0.76 -1.19 225.00 59.66 59.66 -1.29 -1.19 226.00 57.60 57.70 +0.10 -1.00 226.00 59.66 59.66 -1.29 -1.19 226.00 59.66 59.66 -1.29 -1.19 226.00 59.66 59.66 -1.29 -1.19 226.00 59.66 59.66 -1.29 -1.19 -1.19 226.00 59.66 59.66 -1.29 -1.19 -1.19 226.00 59.66 59.66 -1.19 -1.19 -1.19 226.00 59.72 -1.19 -1.19 -1.19	<u>150.00</u> 152.61	72.80	73.01	+0.21		ng Prop	
17.69 66.43 66.43 67.62 +1.19	160.00	70.68	71.21	+0.53		Sa	
177.69 66.43 67.62 +119						State MAJ DES Dept	
180.00 66.43 67.62 +1.19	177.69		68.03			Horizonta III III IIII IIII IIIIIIIIIIIIIIIIII	
197 69 64.79 10.64.43 20000 63 51 64.46 +0.96 211 77 62 56 62.94 +0.36 1 225 00 61 27 62 02 +0.75 10 10 226 00 59 66 58 86 +0.20 10<	180.00	66.43	67.62	+1.19		1 8 1.P. 94.00 West ≤ 0.00 94.10 94.00 0	tern Boundary
19/968 19/479 10.9 10.9 11.77 62.58 62.94 +0.36 1							
211.7.7 62.5.8 62.94 +0.36 217.69 62.27 62.02 +0.75 80 235.00 60.40 260.00 59.66 59.86 +0.20 </td <td>200.00</td> <td>63.51</td> <td>64.79</td> <td>+0.96</td> <td></td> <td>O 1.1.7. 64.43 O 10.00 92.38 91.98 -0.40</td> <td></td>	200.00	63.51	64.79	+0.96		O 1.1.7. 64.43 O 10.00 92.38 91.98 -0.40	
217.69 62.27 60.40 I.P. 60.40 235.00 60.40 I.P. 60.40 240.00 59.66 59.86 +0.20	211.77	62.58	62.94	+0.36		15.00 91.03 90.96 -0.07	
a 100 010 <t< td=""><td>217.69</td><td>61 27</td><td>62.27</td><td>+0.75</td><td></td><td>20.00 89.69 89.95 +0.26</td><td></td></t<>	217.69	61 27	62.27	+0.75		20.00 89.69 89.95 +0.26	
235.00 60.40 I.P. 60.40 240.00 59.66 59.86 +0.20 260.00 57.60 57.70 +0.10 80 268.30 56.80 10.20 10.80 10.80 278.30 55.84 10.9 10.9 10.9 288.30 55.87 55.70 -0.16 00.0 10.7 10.80	220.00					24.20 88.81 89.10 +0.29 V Road Reserve Boundary 5 3 25.00 88.65 89.10 +0.44 Road Reserve Boundary 5 5 20 25.00 88.65 89.10 +0.44 Road Reserve Boundary 5 5 20	16m
240.00 59.66 59.86 +0.20 260.00 57.60 57.70 +0.10 268.30 56.80 278.30 55.84 0 288.30 55.12 297.40 52.88	235.00		60.40			I.P. 60.40	Road R
260.00 57.60 57.70 +0.10 0 268.30 56.80 278.30 55.84 0.1P.55.72 288.30 55.12 0 297.40 52.88	240.00	59.66	59.86	+0.20		φ 35.00 86.15 89.04 +2.88 μ <thμ< th=""> <thμ< th=""> <thμ< thr=""></thμ<></thμ<></thμ<>	eserve
260.00 57.60 57.70 +0.10 00 268.30 56.80 278.30 55.84 288.30 55.84 288.30 55.84 297.44 52.88						▲	or Monowills Fence
$\frac{268.30}{278.30} + \frac{56.80}{55.84} + \frac{10}{2.288.30} + \frac{55.72}{280.00} + \frac{55.12}{55.72} + \frac{10}{56} + \frac{56.52}{55.72} + \frac{10}{56} + \frac{56.52}{56} + \frac{56.72}{55.72} + \frac{10}{56} + \frac{56.52}{56} + 56$	260.00	57.60	57.70	+0.10		See 45.00 84.25 97.34 +3.09 1miller / amily 0 See 47.4 83.84 46.81 +2.97 1miller / amily 0	or monowing rence
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	268.30		56.80				
<u>288.30</u> <u>55.12</u> <u>0</u> <u>0</u> <u>1.P. 54.58</u> <u>1.P. 54.58} <u>1.P. 54.58 <u>1.P. 54.58</u> <u>1.P. 54.58</u> <u>1.P. 54.58</u> <u>1.P. 54.58} <u>1.P. 54.58 <u>1.P. 54.58</u> <u>1.P. 54.58</u> <u>1.P. 54.58</u> <u>1.P. 54.58} 1.P. 54.58 <u>1.P. 54.58</u> <u>1.P. 54.58</u> <u>1.P. 54.58} 1.P. 54.58 <u>1.P. 54.58</u> <u>1.P. 54.58} 1.P. 55.58 <u>1.P. 54.58</u> <u>1.P. 54.58} 1.P. 55.58 <u>1.P. 54.58} 1.P. 55.58 <u>1.P. 54.58</u> <u>1.P. 54.58} 1.P. 55.58 <u>1.P. 54.58</u> <u>1.P. 54.58} 1.P. 55.58 <u>1.P. 54.5</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	278.30		55.84			No 1.P. 55.72 55.00 82.30 84.84 +2.54 98.230 99.84	
$\frac{288.30}{297.40}$ $\frac{54.58}{297.44}$ $\frac{52.88}{52.88}$ $\frac{6}{1}$ $\frac{1}{1}$	280.00	55.87	55.70	-0.16		0 SS(S) F = 60.00 0 0 0 0 0 0 0 0 0 0 0 0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	288.30		55.12		_	SV SC SC SC SC SC SC SC SC SC SC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	297.40 297.44	52.88	54.58			I.P. 54.58 10 70.00 79.20 81.09 +190 00 Reverses 0 Reve	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						75.00 78.48 79.84 +1.36	
	_ _ _ _	_ _ 、 <u>_</u>	I			80.00 78.42 78.59 +0.17 I.P. 78.59	
			_			85.00 78.03	
		Jan2t May2	l			87.80 77.70 90.00 77.38	

Amendment elocated Road Intersection and Reduced 20% to 18% Grade rous Water Realigned Clear of Fill Shown n Easement and Fence Type Shown	Scale at A3: As per Chainages and Levels Date: May 2022 Datum: AHD Survey: Lidar & Canty's SDS Civil Enterprises A.B.N. 56 666 467 255 461 Hinterland Way, Knockrow NSW m 0438 725 414 e pelerw@sdscivil.com.au New Local Street Longsection Project Lands Lot 261 DP1262316 Rankin Drive, Bangalow 1910 - SD - 04 C	

Appendix 2

Broadscale Geotechnical Investigation Report

Ref: GI 4901-B (by Geotech Investigations Pty Ltd)

REPORT ON

BROADSCALE GEOTECHNICAL INVESTIGATION AND LANDSLIDE SUSCEPTIBILITY ASSESSMENT FOR

PROPOSED RESIDENTIAL SUBDIVISION AT

RANKIN DRIVE, BANGALOW

DESCRIBED AS LOT 261 DP 1262316

& LOT 11 DP 807867

PREPARED FOR

INSTANT STEEL PTY LTD

PROJECT REF: GI 4901-B

7 JULY 2022

Geotech Investigations Pty Ltd ACN:154555478 OFFICE: Unit 3 / 42 Machinery Drive Tweed Heads South NSW 2486 POSTAL: PO Box 6885 Tweed Heads South NSW 2486

NVESTIGA

P: 07 5523 3979 F: 07 5523 3981 E: admin@geotechinvestigations.com www.geotechinvestigations.com

DRILLING

ENVIRONMENTAL

GEOTECHNICAL

TABLE OF CONTENTS

1. INT	1. INTRODUCTION2									
2. OB	2. OBJECTIVES AND AGREED SCOPE OF SERVICE									
3. SIT	'E LOC	ATION AND DESCRIPTION	2							
4. GE	OTECI	INICAL CONDITIONS	3							
4.1	Geot	echnical Model	3							
4.2	Field	Work Methodology	3							
4.3	Field	Work Results	3							
4.4	Labc	ratory Results	4							
5. AS	SESSN	1ENT OF THE LIKELIHOOD OF SLOPE INSTABILITY USING AGS GUIDE	LINES5							
5.1	Disc	ussion	5							
5.2	Risk	Categorisation	7							
5.3	Sugg	estions to Reduce and Maintain Risk of Instability	7							
6. IN	TERPR	ETATION OF RESULTS	9							
6.1	Prop	osed Development	9							
6.2	Poss	ible Constraints of Subsurface Conditions to the Project	9							
6.3	Eart	nworks	10							
6.3	.1	General	10							
6.3	.2	Batter Slopes								
6.3	.3	Site Preparation and Fill Placement								
6.4	Geot	echnical Retaining Wall Design Parameters								
6.5	Snrir	ik-Swell Movements and Site Classification	13							
6.0 6.7	FOOL	Ings and Slab-on-Ground	14							
6.8	Gen	eral Comments								
7. LIN	/ITS C	F INVESTIGATION								
Appendix A:		Proposed 'Indicative Subdivision Layout' plan by SDS Civil Enterprises. Site Plan S02								
Appendi	ix B:	Engineering Logs – Test Pit Profiles TP 1 to TP 11								
		Engineering Logs – Borehole Profiles BH 12 to BH 19								
		Geotechnical Report Standard Notes								

Appendix C:AGS Australian GeoGuide LR7 (Landslide Risk)Guidelines to good and Bad Hillside Practices

1. INTRODUCTION

This report details the results of a broadscale geotechnical investigation and landslide susceptibility assessment for the proposed residential subdivision at Rankin Drive, Bangalow, described as Lot 261 DP 1262316 and Lot 11 on DP 807867.

Geotech Investigations Pty Ltd (GI) was commissioned by Max Campbell of Instant Steel Pty Ltd, the developer, to complete this investigation. It is understood the development may comprise the following:-

- Subdivision into multiple residential large allotments (>800 m²);
- Two R3 Medium Density lots; and
- New internal road and associated service infrastructure.

Full details of the development have not been finalised at the time of this investigation. However, a proposed 'Indicative Subdivision Layout' plan by SDS Civil Enterprises, referenced DWG Number: 1910 – RZ-2 (Geotech) Rev G has been provided to GI, and is attached in Appendix A.

2. OBJECTIVES AND AGREED SCOPE OF SERVICE

The geotechnical investigation was to determine information regarding the subsurface conditions and how this influences the design of the new structure etc. The investigation and report involved:-

- General site walk-over;
- Excavation and sampling of test pits(s) at 11 locations;
- Drilling and sampling of borehole(s) / Dynamic Cone Penetrometer test(s) at seven locations;
- Summarise the subsurface conditions, including any groundwater observations at the time;
- Typical constraints that these conditions may have on the project;
- Slope stability hazard risk analysis using The Australian Geomechanics Society (AGS) guidelines;
- General earthworks, including safe batter slopes; and retaining wall design parameters;
- Estimated movements relating from Shrink-Swell of cohesive soils;
- Expected Site Classification in accordance with AS2870-2011¹ to assist with footing and slab design; and
- Soil strength information and estimated settlements for footing and slab design.

¹ Australian Standard AS2870-2011 'Residential footings and slabs - Construction', Standards Australia

Our Ref: HT:jw: GI 4901-b

Individual slope stability assessment and site classification reports will be required for each proposed structure as part of their development approval or building application.

3. SITE LOCATION AND DESCRIPTION

A site visit was carried out on the 9th of December 2019 by an experienced Geotechnical Engineer from GI, with the purpose of viewing the subject site and making observations of the local geology, existing vegetation and the existing stability of the natural slopes within and surrounding the site.

The site is approximately 4 hectares in total area, irregular shaped and located to the north of Rankin Drive, bounded to the north by Hinterland Way, with residential properties and Satinash Crescent to the west. In general, the allotment slopes in an easterly direction from RL 110 m AHD in the north west corner down to a stream at RL 48 m AHD, before a gentle rise to RL 53 m AHD in the far eastern corner. Overall gradients were measured at approximately 18 degrees from the western boundary decreasing to less than 10 degrees towards the stream.

Traversing the southern boundary is a gully, from the Rankin Drive boundary, down to the stream. Similarly, a gully traverses beyond the northern boundary within the Hinterland Way road reserve. On the northern side of the site, to the west of the stream, a steep embankment up to 6 m high was observed, possibly the remnants of a burrow area (refer Figure 4).

Figure 1: Looking south east from top of hill

Figure 3: Looking west from stream

Figure 4: Steep embankment

4. GEOTECHNICAL CONDITIONS

4.1 Geotechnical Model

Reference to geological mapping by the Geological Survey of New South Wales 1:250,000 series 'Tweed Heads' sheet indicates the site is underlain by soils from the Tertiary aged Lismore Basalt of the Lamington Volcanics, which typically comprise "basalt (agglomerate, bole)".

4.2 Field Work Methodology

Fieldwork was undertaken on the 9th of December 2019 comprising:-

- The excavation and sampling of 11 test pits, designated TP 1 to TP 11, using a 5.5 tonne hydraulic excavator, fitted with a 450 mm rock toothed bucket and ripping tyne to termination between 0.9 m and 3.1 m depth.
- The drilling and sampling of seven boreholes, designated BH 12 to BH 18, using a vehicle mounted drill rig to termination at 2.8 m depth.

The approximate locations of the test pits and boreholes are shown on Site Plan SO2 attached in Appendix A, along with GPS co-ordinates within the engineering logs.

This investigation has been carried out generally in accordance with AS $1726 - 2017^2$ in terms of soil description. Material description was assessed using visual and tactile methods. Pocket Penetrometer testing was carried out in the cuttings and walls of the test pits to assess approximate undrained shear strengths of the cohesive soils.

The fieldwork was carried out by an experienced geo-technician and geotechnical engineer who positioned and logged the materials encountered in the test pits / boreholes. At the completion of test locations, the test pits / boreholes were backfilled loosely with excavated spoil and tamped down.

4.3 Field Work Results

The results of the fieldwork are detailed on the Engineering Log attached in Appendix C, along with explanatory notes. Table 1 below provides a summary of these conditions.

² Australian Standard AS 1726-2017 'Geotechnical site investigations', Standards Australia

DRILLING

ENVIRONMENTAL

GEOTECHNICAL

Table 1. Summar	able 1. Summary of Subsurface conditions (depth in metres below existing surface rever)							
Test	"Uncontrolled" Fill	Residual Soils	Weathered Rock					
Location		Stiff to hard Clays	Extremely low to low					
			strength BASALT					
TP 1	NE	0 m to 0.6 m	0.6 m to 0.9 m					
TP 2	NE	0 m to 2.8 m	NE					
TP 3	NE	0 m to 1.5 m	1.5 m to 2.5 m					
TP 4	NE	0 m to 1.5 m	1.5 m to 2.8 m					
TP 5	NE	0 m to 1.3 m	1.3 m to 2.3 m					
TP 6	NE	0 m to 0.5 m	0.5 m to 1.4 m					
TP 7	NE	0 m to 1.4 m	1.4 m to 2.1 m					
TP 8	NE	0 m to 2.5 m	NE					
TP 9	0 m to 1.1 m	1.1 m to 2.7 m	2.7 m to 2.9 m					
TP 10	NE	0 m to 2.9 m	NE					
TP 11	NE	0 m to 3.1 m	NE					
BH 12	NE	0 m to 0.7 m	0.7 m to 2.8 m					
BH 13	NE	0 m to 2.8 m	NE					
BH 14	0 m to 1.7 m	1.7 m to 2.8 m	NE					
BH 15	0 m to 0.3 m	0.3 m to 2.8 m	NE					
BH 16	0 m to 0.5 m	0.5 m to 2.8 m	NE					
BH 17	0 m to 0.6 m	0.6 m to 2.8 m	NE					
BH 18	NE	0 m to 2.8 m	NE					
BH 19	NE	0 m to 2.8 m	NE					

Table 1: Summary of Subsurface Conditions (depth in metres below existing surface level)

Notes: NE – Not Encountered

Groundwater seepage was not observed during the investigation, while the boreholes / test pits remained open. It should be noted that groundwater is affected by climatic conditions, varying soil permeability, and will therefore vary over time.

4.4 Laboratory Results

Laboratory testing was undertaken by Border-Tek Pty Ltd on a bulk samples collected during the investigation. Laboratory testing results are summarised in Table 2 below, with Report attached in Appendix C.

Sample Location	Depth (m)	MDD (t/m³)	OMC (%)	CBR Value (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index
TP 9	0.6-1.5	-	-	-	86	66	20
TP 11	0.4-0.7	1.19	45.5	6	71	57	14

Table 2: Summary of Laboratory Testing

Notes: OMC – Optimum Moisture Content (%) MDD – Maximum Dry Density (t/m³) CBR – California Bearing Ratio (%)

5. ASSESSMENT OF THE LIKELIHOOD OF SLOPE INSTABILITY USING AGS GUIDELINES

5.1 Discussion

Natural hill slopes are formed by processes which reflect the site geology, climate and environment. The natural process can be influenced by human intervention in the form of earthworks, construction or other related activities. The risk associated in hill side construction is far greater than level construction. Good hill side building practices should be adopted to decrease the risk associated with it. Figures on good and bad hillside construction are presented in Appendix C of this report.

To define a slope as being 'stable' or 'unstable' is not technically feasible, however assessing the likelihood of slope movement can help in defining the stability of the site. Several methods can be adopted to assess the likelihood of slope movement including existing surface features supplemented with knowledge of the subsurface profile and experience gained on similar sites.

A five-fold subdivision of landside likelihood categories has been developed by the Australian Geomechanics Society-Sydney Group (AGS-SG) and is described in their 1985 paper on "Geotechnical Risk Associated with Hillside Development". In March 2003, the AGS Sub-Committee on landslide Risk Management subsequently published "Landslide Risk Management Concepts and Guidelines" which review the earlier publication and the most current review in the 2007 publications.

The guidelines typically is to define and assess the "risk" as a function of the likelihood or probability of an event occurring (i.e. landslide, batter failure etc.) and the damage that this event may have (i.e. damage to property, loss of life etc.). Landslide and hazard risk zoning is a method of identifying different areas on a site with regard to the potential of a hazard or risk and incorporating this risk into local planning and development. The risk assessment process involves answering the following:-

- What might happen?
- How likely is it?
- What damage or injury may result?
- How important is it?
- What can be done about it?

GEOTECHNICAL

It is normal to carry out a preliminary assessment of the first two points and is generally based on the site observations and soil profiles.

The causes of slope instability are well documented in the above mentioned literature and include the following factors:-

- Slope angle;
- Underlying geology and soil types;
- Vegetation cover;
- Variable and transient factors such as rainfall intensity, overland water flows, groundwater flows, piezometric pressures and seismic vibrations;
- Presence of soil masses in an unstable condition (ie. past movement);
- Man made factors such as construction activity including earthworks, removal of vegetation and changes to the surface and subsurface drainage, retaining walls, etc.

For any given area some of the above factors can be identified, while other possible contributing factors can be considered. From studying existing slope instabilities and the failure mechanisms, it is possible to make an assessment of the potential, relative likelihood of similar conditions arising in other areas. Slope instabilities can also be induced from man made factors including:-

- The construction of fill slopes;
- Undermining of steep slopes;
- Changing of water flow paths, in particular at the toe of slopes;
- Concentrated stormwater flow onto building platforms;
- Inadequate design and/or construction of retaining walls; and
- Saturation of soil below septic waste disposal absorption fields.

The terminology of the AGS Guidelines has been employed in the descriptions of hazards and the qualitative assessment of the likelihood, consequence and risk of slope instability. The following guidelines can be used for describing the likelihood of slope movement:-

Likelihood	Probability	Qualitative Risk	Significance
Barely Credible	10 ⁻⁶	Very Low	Acceptable
Rare	10 ⁻⁵	Low	Usually Acceptable
Unlikely	10 ⁻⁴	Moderate	May be tolerated
Possible	10 ⁻³	High	Unacceptable
Likely	10-2	Very High	Unacceptable
Almost Certain	10-1	Extremely High	Unacceptable

Any proposed residential development should generally include works which result in 'acceptable' or 'usually acceptable' risk level to the property after construction. In some cases, subject to appropriate monitoring and maintenance programs, a 'may be tolerated' risk may be accepted. Definitions of acceptable and tolerable risk included in the AGS Guidelines are attached as Appendix C.

5.2 Risk Categorisation

The site has been qualitatively classified in general accordance with the methods of the AGS. The effect of these hazards on the site has been summarised in Table 3, together with a qualitative assessment of likelihood, consequence and risk to the property in its proposed conditions.

Hazard	Likelihood	Possible Consequence	Risk Category
Creep of near surface	Possible	 Insignificant damage to ancillary 	Low
soils		structures and landscaping.	
Landslip in natural slopes	Unlikely	Major damage to dwellings, roads	Moderate
greater than 18° and less		and services.	
than 26 degrees			
Landslip in natural slopes	Rare	Major damage to dwellings, roads	Low
between 10° and 18°		and services.	
Landslip in natural slopes	Barely credible	Major damage to dwellings, roads	Low
less than 10°		and services.	
Landslip in excavated	Possible	Major damage to dwellings, roads	High
embankments or filled		and services.	
platforms			
Surface water from upper	Unlikely	Minor damage to structures and	Low
slopes weakening		retaining walls for repair.	
founding soils			
Debris (cobbles,	Likely	Minor damage to downslope	Moderate
boulders, weakened rock		structures.	
fragments) rolling down			
slope earthworks.		• Injury or death to persons.	

Table 3: Hazard and Risk Summary for Proposed Residential Subdivision

The analysis summarised in Table 3 indicates a **"high"** risk item which requires mitigation measures to reduce these risks, and **"moderate"** risk items that may be tolerable however mitigation measures have also been provided to reduce these risks.

5.3 Suggestions to Reduce and Maintain Risk of Instability

The risk mitigation will need to focus on reducing the 'high' risk item to achieve an acceptable risk level, specific mitigation required for areas within the 'moderate' risk categories and maintaining or improving the 'low' risk categories. The recommendations in Table 4 below are designed to maintain or reduce the risk of slope instability to an acceptable level for future development of the site.

Hazard	Hazard Mitigation Measures	Revised
nazaru		Risk
		Category
Landslip in natural slopes greater than 18° and Less than 26 degrees.	 Limit disturbance of natural slopes greater than 18° Regulate construction methodology on slopes greater than 18° to ensure construction suits the slope (i.e. pole-type homes, terraced dwellings, etc). Limit unsupported cut/fill earthworks in areas greater than 18° to loss than 1 m. All other cut and fill must be supported 	Low
	using engineered retaining walls with site specific global stability to achieve required Factor of Safety.	
	 Gravity type retaining walls may not be used in these areas. Prepare and follow detailed Stormwater Management and Erosion Control Plans to limit the concentration of stormwater. 	
Landslip in excavated embankments or filled platforms	 Cut and fill earthworks to be limited to maximum 3 m depth, Unless Noted Otherwise in report. All earthworks to be completed to provide "controlled" fill as 	Low
	per section 6.3.2 belowAll batter slopes to be prepared as per Section 6.2 below.	
	 Retaining walls must be engineer designed to individual site conditions. 	
Surface water from ridgeline / upper slopes weakening founding soils	 All surface water from the upper areas be collected and / or diverted away from the building envelopes, into the stormwater system or approved stormwater discharge point. Preventing additional runoff on the site is essential in maintaining and improving the existing risk of instability. 	Low
Debris (cobbles, boulders, weakened rock fragments) rolling down slope during earthworks.	 Temporary bund walls, catchment devices (or similar) and buffer zones below each building envelope are suggested to be implemented during construction to reduce this risk of debris flow. Contractor must provide a suitable SWP/JSA for earthworks with site-specific risk management of excavation and moving 	Low
	of existing boulders.	

Table 4: Risk Mitigation Measures for Proposed Residential Subdivision

Our Ref: HT:jw: GI 4901-b

The following recommendations are a summary and also aimed to assist with reducing or maintaining the risk of slope instability within the proposed building areas:-

- All loads must not surcharge any proposed retaining walls, or the crest of batters, with all loads required to be deepened below the walls' / batters' zone of influence.
- Retaining structures will need to be suitably 'engineered designed', refer to Section 6.4.
- Gravity retaining walls such as boulder, gabion and crib are generally not recommended. They must not be used in areas of Slopes of greater than 18 degrees.
- Embankment protection is to be placed on the embankment faces (e.g. mulching, planting vegetation) to limit the degree of rill erosion from water runoff and drying out / cracking if left exposed, as these will influence the potential for inducing landslips.
- Ensure all stormwater management plans and drainage plans are adhered to, particularly in relation to ensuring that all surface water is collected and diverted away from the building envelopes, top of batters and retaining walls. Preventing additional runoff on the site is essential in maintaining and improving the existing risk of instability.
- Maintain good vegetation over the remainder of the site and provide additional vegetation with good root systems for any batters and cut embankments.

Additional information, which should be adopted during construction, is given in 'AGS Australian Geoguide LR7 (Landslide Risk)' and 'Guidelines to Good and Bad Hillside Practices' attached in Appendix C.

6. INTERPRETATION OF RESULTS

6.1 Proposed Development

It is understood the development will comprise the subdivision of the existing allotments into 19 residential large allotments (>800 m2) and 2 medium density allotments, with a new road from Rankin Drive. Details of earthworks are not known at this time.

6.2 Possible Constraints of Subsurface Conditions to the Project

The results of the investigations indicate generally natural clays of variable thickness over weathered basalt rock. There were localised areas of existing fill, as well as existing stockpiles of soil and tree offcuts.

Excavations, depending on the depth, may encounter difficult conditions due to variable thickness of residual soil over weathered basalt, and the variable strength of the basalt.

6.3 Earthworks

6.3.1 General

General earthworks are anticipated to comprise cut to fill to produce road platforms, with up to 3 m cut and/or fill suggested as a maximum.

Each individual residential allotment will differ in terms of earthworks design and construction methodology, however the advice provided in Table 4 and design recommendations in Table 5 should be followed for details design.

Should additional earthworks be required during detailed civil design, this office must be contacted to provide further advice. In this case, it is likely that further investigation and assessment will be required.

6.3.2 Batter Slopes

Stable batter angles in soils are strongly dependent upon fill type and compaction, soil type and strength, strength of underlying soils, slope angle / height and surcharge loadings. For the purpose of preliminary design, the batter slopes presented in Table 5 are considered to be suitable for the different soil and rock conditions encountered on the site. Restrictions on earthworks are imposed in areas of greater than 18 degrees, refer to Table 4 for more details.

Where soil / rock conditions vary from those presented in Table 5, GI may provide guidance and alternative slope angles on site during construction. At these batter slopes, some movement at and behind the slope crest, as well as some localised slumping of batter faces may occur, however should be considered "unlikely".

The batter slopes assume that no surcharge loadings will be applied to the crest of the slope, and that no seepage out of the batter is present. If seepage is encountered or present at any stage, site specific geotechnical advice on batter stability should be obtained, and likely positive support options considered. All permanent batter slopes are to be protected from erosion and scour by use of appropriate drainage and vegetation.

DRILLING

0		
Soil Stratum	Short Term (Maximum)	Long Term (Maximum) ⁽¹⁾
Controlled Fill Batters ⁽²⁾	1V:1H (45°)	1V:2H (26°)
Residual Soils and extremely weathered basalt	1V:1H (45°)	1V:2H (26°)
Very Low Strength (or better)		1V: 1H (45°)
Basalt ⁽³⁾	1V:0.5H (63°)	must refer to Note 3

Table 5: Slopes Angles for Batter Heights < 3 m (Unsurcharged, Horizontal Ground Behind Crest)⁽¹⁾

Notes:

⁽¹⁾ A geotechnical engineer from GI is required to be on site during excavations of embankments and placement of fill batters to confirm safe batter slopes. These slopes assume the batters are not underlain by lower bearing strata.

⁽²⁾ All 'controlled' fill batters should be overfilled, compacted and cut back at a maximum angle given in Table 5 for filled batters. These slope angles are dependent on the fill material used.

⁽³⁾ The stability of excavations in rock is often governed by the presence of geological structures such as bedding planes, joints and faults. A suitably experienced Engineering Geologist/Geotechnical Engineer must inspect the excavations at the time of construction to assess whether the slope angles recommended in Table 5 are appropriate for the exposed conditions.

6.3.3 Site Preparation and Fill Placement

Generally, all earthworks are to be carried out in accordance with AS 3798 – 2007³. The following earthworks procedures can be used as a preliminary guide to support slab-on-ground and pavements:-

• In building and pavement areas, and areas to accept new fill, the subgrade must be prepared by removing any existing "uncontrolled" fill (where encountered), loose debris, soils that are wet, or contain vegetation or deleterious materials.

HOLD POINT: Inspection by a geotechnical engineer required

- It is expected that the existing natural clays could be re-used for fill, depending upon the performance requirements, moisture control and conditioning, and ensuring any oversize particles are removed.
- The exposed subgrade should be test rolled using a 12 tonne roller (or similar), loaded water truck or dump truck to determine the presence of any soft spots, which should be excavated out and replaced with compacted select fill.

HOLD POINT: Inspection by a geotechnical engineer required

• The exposed surface should be tyned to 0.2 m depth, moisture conditioned and then compacted.

HOLD POINT: Inspection by geotechnical personnel required

³ Australian Standard AS 3798-2007 'Guidelines on earthworks for residential and commercial developments', Standards Australia

Our Ref: HT:jw: GI 4901-b

• The site area that will accept new fill is required to be benched at a maximum vertical height of 1 m with the bench sloped slightly forward at 1V:10H to promote drainage.

HOLD POINT: Inspection by geotechnical personnel required

Structural fill for earthworks should comprise select granular material and be uniformly compacted to 98% Standard MDD (or higher), with moisture content within 2% wet or dry of OMC for cohesive material. Cohesionless material (sand material) is to be compacted to achieve a minimum 70% density index. Layer thickness depends on the compaction equipment, however 200 mm to 250 mm loose layer thickness is generally considered suitable for most mechanical compaction equipment. Where backfill for service trenches is carried out, the above layer thickness applies however if vibrating plates are used, the layers are to be placed in 100mm loose thickness.

HOLD POINT: Inspection by geotechnical personnel required to 'Level 1' standard

- Field testing must be carried out to confirm the standard of compaction achieved and the moisture content during the construction. The test frequency and extent of testing is to be carried out as per AS 3798, Section 8.0 and compaction testing is to be carried out by a NATA accredited laboratory.
- The placement of fill material to support building loads and pavements must be placed and compacted under 'Level 1' full-time geotechnical inspections and testing.

It is expected that the existing clayey soils will be susceptible to softening due to increase in moisture content, such as following rainfall, etc. Therefore, areas exposed to the elements should be minimised, and a layer of compacted select granular fill should be considered to improve traffickability, especially in access and egress areas.

6.4 Geotechnical Retaining Wall Design Parameters

Flexible retaining walls (i.e. those free to rotate or tilt) may be preliminarily designed using a triangular pressure distribution, adopting the earth pressure parameters and 'active' earth pressure coefficient (K_A) provided in Table 6 below. These include cantilevered, single propped or anchored retaining walls. For design of walls that are rigid and unable to rotate or tilt (i.e. basement wall that is tied to an upper level concrete floor), the 'at-rest' earth pressure coefficient (K_O) should be adopted for design.

The values provided in Table 6 are ultimate values, and appropriate safety factors or strength reduction factors should be included.

	Unit weight	Undrained	Pressure Coefficients						
Soil Stratum	(t/m³)	Cohesion (kPa)	Active (k _A)	At-rest (k _o)	Passive (k _P)				
"Controlled" Fill	1.6 - 1.8	125-200	0.40	0.55	3.33				
Stiff clays	1.6	75	0.39	0.56	2.56				
Very stiff / hard clays Extremely low strength Basalt	1.8	150	0.36	0.53	2.77				
Very low strength Basalt	2.0	450	0.25	0.40	4.00				

Table 6: Geotechnical Retaining Wall Design Parameters (Unfactored)

The design of all retaining walls will need to take into account any surcharge loading behind the walls. The lateral earth pressure coefficients provided in Table 6 have not made allowances for surcharge loadings from existing or future structures and these should be taken into consideration when designing the retaining wall system. Any backfill placed behind the wall should be loose granular material.

Footing sizes for retaining walls could be designed using the parameters given in Section 6.6. The parameters adopted for footings for cantilevered retaining walls should be reduced by one third to account for lateral loads.

6.5 Shrink-Swell Movements and Site Classification

Laboratory testing from one sample indicated a shrink-swell Index (I_{ss}) of 3.8% / pF. Based on laboratory testing from similar soils in this area, this value can vary between 3% / pF and 4% / pF.

The results of calculations reveal that under normal soil moisture variations (i.e. seasonal), y_s values for the natural clay soils encountered in the boreholes are estimated to be in the order of 40 mm to 50 mm. This would suggest that typically each building site in the current natural state would be classified as "Class H1" (Highly reactive).

The effect of earthworks must also be considered on design values. The calculations were completed to model the effect of probable cut and fill earthworks, and the y_s values increase to 60 mm to 75 mm. This would indicate a site subject to cut and fill earthworks should be reclassified as "Class H2" (very highly reactive).

This classification is relevant to sites subject to seasonal moisture changes only. Abnormal moisture conditions, such as from the removal or planting of trees (including on adjacent sites), poor site drainage, and development of gardens adjacent to the footings, may cause higher movements to occur, probably resulting in damage, which may or may not be within acceptable ranges.

GEOTECHNICAL

DRILLING

Our Ref: HT:jw: GI 4901-b

6.6 Footings and Slab-on-Ground

Each individual building area must be investigated and assessed based on the proposed construction, however as a guide, the following comments can assist in preliminary design/evaluation.

Based on the results of the fieldwork, the exposed subgrade in possible building areas is likely to comprise localised areas of "controlled" fill (where existing 'uncontrolled' fill has been removed), with exposed residual stiff to hard clays and possibly extremely low strength grading to low strength (or stronger) basalt rock.

Where high level footings are to be considered, all footings, edge beams and internal beams of a slabon-ground should be founded into uniform 'controlled' fill or natural stiff or better clay, where an allowable bearing pressure of 100 kPa may be adopted. Where necessary, footings may be founded into the weathered rock where an allowable bearing pressure of 300 kPa to 500 kPa, or higher, may be considered subject to individual requirements.

No footings are to be placed in fill material where the natural slopes are greater than 18 degrees. In these areas, site specific geotechnical design is required.

Settlements induced by footings loaded to these pressures can be estimated in the order of 1% to 2% of footing width. Additional settlements would be induced in fill material due to self-weight, possibly up to 2% of fill thickness over a 10 year to 20 year period.

6.7 Indicative Pavement Parameters

For preliminary pavement design purposes, based on experience in the area with similar 'silty clay' materials, a typical design CBR of 2% to 3% would be expected for these materials at 100 % standard compaction. Confirmatory pavement design parameters must be confirmed during construction, as it will depend on the nature of the subgrade materials.

It is expected that the clay subgrades will exhibit poor subsurface drainage, and it is recommended that subsoil drains be installed early in the works, particularly where pavements adjoin landscaped areas or other water sources.

6.8 General Comments

The above information and calculations are based on existing site soils and assumes moisture conditions within site soils vary due to seasonal effects only. If abnormal moisture conditions occur (due to drying by tree root action, or wetting by leaking pipes, water ponding, etc.), significantly greater movements are considered possible, and the Site Classification should be reconsidered.

It is recommended that good engineering practices be adopted in the design of all structures and foundations and in particular, the following should be considered for movement in sensitive areas underlain with reactive materials:-

- Trees and shrubs should not be planted or be allowed to remain closer than their mature height to movement sensitive structures / features. Where trees exist within this distance, deeper foundations may be required and GI should be notified immediately to provide such recommendations;
- Soil moisture should be controlled to limit moisture content change during or following construction;
- The site should be graded to allow surface water to easily flow into a suitable stormwater system, and prevent ponding, particularly adjacent to the footings; and
- Underground services should be made flexible where possible.

During periods of high rainfall, concentrated surface water runoff or ponding may occur on the site. Suitable drainage and diversion of all runoff into the stormwater articulation systems to prevent water ponding is necessary prior, during and after the construction of any proposed residential development.

7. LIMITS OF INVESTIGATION

Recommendations given in this report are based on the information supplied regarding the proposed building construction in conjunction with the findings of the investigation. Any change in the construction type or building location may require additional testing and/or make recommendations invalid.

Every reasonable effort has been made to locate the test sites so that the test pits and boreholes are representative of the soil conditions within the area to be investigated. The client should be made aware, however, that this assessment has been based on limited site data using relatively limited excavations and small diameter boreholes, and that subsurface conditions may vary across the area.

If you should require any further information or clarification, please do not hesitate to contact this office.

Yours faithfully For and on behalf of Geotech Investigations Pty Ltd

<u>Heath Thomas</u> AdvDipEng(Civil), AMIEAust Geotechnical Engineering Associate

<u>James Walle</u> RPEQ (15701), RPEng (Civil), B.Eng (Civil) Senior Geotechnical Engineer

APPENDIX A

PROPOSED 'INDICATIVE SUBDIVISION LAYOUT' PLAN BY SDS CIVIL ENTERPRISES, REFERENCED DWG NUMBER: 1910 – RZ-2 (GEOTECH) REV G

SITE PLAN SO2

ENVIRONMENTAL

DRILLING

APPENDIX B

ENGINEERING LOG – TEST PIT PROFILES TP 1 TO TP 11 ENGINEERING LOG – BOREHOLE PROFILES BH 12 TO BH 19 GEOTECHNICAL REPORT STANDARD NOTES

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

ENGINEERING LOG – TEST PIT PROFILE

	GPS: N: 28 40 43.80 E: 153 31 34.75													
CL	CLIENT: INSTANT STEEL PTY LTD TEST PIT I.D.: TP 1													
PF	ROJEC	T: RANKIN DRI	VE, BANGALOW				JOE	8 No.: G	I 4901					
50	מחוווכ						ВА		÷ 1					
-	JUIPI	VIEINT TTPE: 5.5		BUCKET SIZE: 45			PA	GE: 10	1					
Method	Water	Graphic Log Depth (m)	Materi	al Description		Consistency / Rel. Density	Sample / Tect	DCP Blows / 100mm	Structure and additional observation					
II		_	(CH) Sandy CLAY: Trace of silt,	High plasticity, Fine to	coarse sand,	St			RESIDUAL					
Ű		-	Dry, Dark red/brown	Llich placticity Maint	(we down) Dowle				*Oraganics & roots					
		— .	Red/brown. Friable	nigh plasticity, woist	(w <wp), dark<="" td=""><td>пи</td><td></td><td></td><td>throughout</td></wp),>	пи			throughout					
		0.5_												
		_												
		-	(DW) BASALT: Fine grained, Dr	ry, Grey & orange brow	vn mottling,	VLw								
		-	Highly fractured			/LW								
		1.0_												
		_												
		-												
		-												
		1.5_												
		_												
		-												
		2.0_												
		-												
		-												
		_												
		2.5_												
		-												
		_												
		3.0_												
		_												
		_												
		2 5												
		5.5_												
		_												
		4.0												
		_												
		-												
		4.5_												
TF	P 1 TE	RMINATED AT	0.9m - REFUSAL WITHIN WEA	ATHERED ROCK		. 1			D. 50 / 75070					
ΔΓ)	METHOD Auger Drilling	WEATHERING CO	/NSISTENCY / DENSITY / erv Soft	ROCK STRENGTH	1) 11	SAM مdisturh	PLES / TESTS d (size in mm)					
RT	-	Ripping Tyne	HW Highly S S	oft VE	Very Dense	e D	, Di	isturbed						
M	S	Mud Support	DW Distinctly F F	irm Fb	Friable	BS	B	ulk Sampl	e Den etnemet en e					
NN RP	VILC 1	Rock Coring Rock Roller	SW Slightly VSt V	un EL' 'erv Stiff VI	w Extremely w Verviow	LOW DC	г Di Г St	ynamic Co andard Pi	one Penetrometer enetrometer Test					
TB	5	Toothed Bucket	F Fresh Hd H	lard Lw	Low	N	N	umber of	blows for SPT / 300mm					
тс	2	Tri Cone	VL V	'ery Loose M	Medium	VS	V	ane Shear						
W	В	Wash Bore		oose H Aedium Dense VI	High Verv High	A pd	Ai Pi	cid Sulfate	e Sample etrometer (kPa)					
	•	Water Level		iculum Dense VI	veryriigh		с ч							
	•	Water Seepage	Logged By: JW	Date: 09/12	/19 Check	ed By:	HT	Dat	te: 22/01/2020					

Form GI 003h Issue 3

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

ENGINEERING LOG – TEST PIT PROFILE

GPS: N: 28°40′ 42.19″ E: 153°31′ 3													E: 153°31′35.//″	
CL														
PF	ROJEC	T: RANKIN DRI	VE, BANGA	LOW		1					JOB	No.: GI	4901	
EC		MENT TYPE: 5.5	TONNE KU	BOTA EXC	CAVATOR	BUCKET SI	ZE: 450mm	n TB			PAC	GE: 1 of	1	
Method	Water	Graphic Log Depth (m)			Materi	al Description			Consistency / Rel. Density	Test	Sample /	DCP Blows / 100mm	Structure and additional observation	
H		_	(CH) San	dy CLAY: Tra	ce of silt, High p	lasticity, Fine to o	coarse sand, Dr	y, Dark	St				RESIDUAL	
		_ _ 0.5_	(CH) Sil Red/br	ty CLAY: Ti own, Friab	race of sand, le	High plasticity	ı, Moist (w <v< td=""><td>vp), Dark</td><td>Hd</td><td>PP></td><td>450</td><td>-</td><td></td></v<>	vp), Dark	Hd	PP>	450	-		
		 1.0	(CH) Sil Red/br	ty CLAY: Ti own,	race of sand,	High plasticity	<i>v,</i> Moist (w <v< td=""><td>wp), Dark</td><td>Hd</td><td>PP></td><td>450</td><td>-</td><td></td></v<>	wp), Dark	Hd	PP>	450	-		
		 1.5												
		_ 2.0_ _												
		_ _ 2.5_ _												
		3.0_ - -												
		 3.5 												
		4.0_ _ _												
		4.5												
TP	2 TE	RMINATED AT	r 2.8m – Ll	MIT OF IN	IVESTIGATI	ON				ı			1	
	<u>ו</u> ר	METHOD	WEAT	HERING		NSISTENCY / D	ENSITY / ROC	K STRENGTH	1	11()	110	SAM	PLES / TESTS	
RT	-	Ripping Tyne	HW H	lighly	S S	oft	VD	Very Dense	2	D	Dis	sturbed		
M	S	Mud Support	DW D	Distinctly	F Fi	irm	Fb	Friable		BS	Bu	lk Sample	e Denotre la c	
NN RP	VILC 1	Rock Coring Rock Roller	SW S	vioderately lightly	St St VSt V	titt erv Stiff	ELw VLw	Extremely Verv Low	LOW	DCP SPT	Dy Sta	namic Co andard P	one Penetrometer enetrometer Test	
TB	1	Toothed Bucket	F F	resh	Hd H	ard	Lw	Low		N	Nu	imber of	blows for SPT / 300mm	
TC	;	Tri Cone			VL V	ery Loose	M	Medium		VS	Va	ne Shear		
W	В	Wash Bore WATER	-		MD N	oose 1edium Dense	н VH	Hign Very High		A PP	Ac Po	id Sulfate	e sample etrometer (kPa)	
	▼	Water Level Water Seepage		Sv· 1\//		Date [.]	09/12/19	Check	ed By:	<u> </u> нт	-	Dat	te: 22/01/2020	

Form GI 003h Issue 3

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

_	CLIENT: INSTANT STEEL PTY LTD TEST DIT 1 D + TD 3														
C	CLIENT: INSTANT STEEL PTY LTD TEST PIT I.D.: TP 3														
PI	ROJE	CT: RANK	IN DRIV	/E, BAN	IGALOW	,							JOB	No.: G	4901
EC	QUIPI	MENT TY	PE: 5.5	TONNE	KUBOT	A EXCA	VATOR	BUCKET SI	ZE: 450mn	n TB			PAG	GE: 1 of	1
	Ì										_				
Method	Water	Depth (m)	Graphic Log				Ma	terial Description			Consistency / Rel. Density	Test	Sample /	DCP Blows / 100mm	Structure and additional observation
ΤВ		-		(CH Drv) Sandy (. Dark re	CLAY: T d/brov	race of s	ilt, High plasticity	/, Fine to coa	arse sand,	St				RESIDUAL
		-		(CH Red) Silty CL l/brown,	AY: Tra Friable	ace of sa	nd, High plasticity	/, Moist (w<	wp), Dark	VSt/ Hd	-			
		0.5_													
				(CH Red) Silty CL l/brown,	AY: Tra Friable	ace of sa e, Traces	nd, High plasticity of EW-HW: BASA	∕, Moist (w< ALT very ligh	wp), Dark t & silty	Hd				
		1.0_													
		-													
		 1.5													
		_		(HV Gre	V) BASAL y & oran	T: Trac ge bro	e of bou wn specl	lders within layer <les &<="" grey="" of="" pale="" td=""><td>r, Fine graine & black, High</td><td>ed, Dry, nly</td><td>ELw</td><td></td><td></td><td></td><td></td></les>	r, Fine graine & black, High	ed, Dry, nly	ELw				
				frac	tured										
		2.0_													
		-													
		2.5_													
		-													
		-													
		3.0_													
		-													
		3.5_													
		_													
		-													
		4.0_													
т	 P 3 TI	^{4.5} ERMINA	TED AT	2.5m -	- LIMIT	OF IN	VESTIG	TION			<u> </u>	<u> </u>		<u> </u>	
	_	METHOD		W	EATHERIN	١G		CONSISTENCY / D	ENSITY / ROC	CK STRENGT	H			SAM	PLES / TESTS
A	D T	Auger Dri	lling Tyne	EW HW/	Extren Highly	nely	VS S	Very Soft Soft	D	Dense Very Dense	e	U()	Ur	ndisturbe sturbed	d (size in mm)
M	' IS	Mud Sup	port	DW	Disting	tly	F	Firm	Fb	Friable	~	BS	Bu	ilk Sampl	e
N	MLC	Rock Cori	ng	MW	Mode	rately	St	Stiff	ELw	Extremely	Low	DCP	Dy	namic Co	one Penetrometer
RF	२ २	Rock Roll	er Bucket	SW F	Slightl Fresh	У	VSt Hd	very Stiff Hard	VLW I w	Very Low Low		SPT N	Sta Ni	andard Po umber of	enetrometer Test blows for SPT / 300mm
TC	2	Tri Cone	DUCKEL		110311		VL	Very Loose	M	Medium		VS	Va	ine Shear	
W	/B	Wash Bor	re				L	Loose	Н	High		A	Ac	id Sulfate	e Sample
		WATER					MD	Medium Dense	VH	Very High		PP	Ро	ocket Pen	etrometer (kPa)
	▼	water Lev Water Se	vei epage	Logge	ed By:	IW		Date:	09/12/19	Check	ked Bv:	<u> </u>		Dat	te: 22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

	CLIENT: INSTANT STEEL DTV ITD														
CL	CLIENT: INSTANT STEEL PTY LTD TEST PIT I.D.: TP 4														
PF	ROJE	CT: RANK	(IN DRI)	/E, BAN	IGALOW	1							JOB	No.: G	I 4901
EC	QUIPI	MENT TY	PE: 5.5	TONNE	KUBOT	A EXCA	VATOR	BUCKET S	IZE: 450mr	n TB			PAC	GE: 1 of	f1
Method	Water	Depth (m)	Graphic Log				Ma	terial Description			Consistency / Rel. Density	Test	Sample /	DCP Blows / 100mm	Structure and additional observation
ΤB				(CH Dry) Sandy (, Dark re	CLAY: T d/brov	race of s	ilt, High plasticit	y, Fine to co	arse sand,	St				RESIDUAL
		- 0.5_ - - 1.0_ -		(CH (w<) Silty CL wp), Rec	AY: Tra	ace of sai	nd & boulders, H	igh plasticity	r, Moist	VSt/ Hd				
		- - 1.5		(CH Red) Silty CL l/brown,	AY: Tra Friable	ace of sar e, Traces	nd, High plasticit of EW-HW: BAS/	Hd						
				(HV Gre frac	V) BASAL y & oran tured	.T: Trac ige bro	e of bou wn specl	lders within laye kles of pale grey	r, Fine graine & black, Higl	ed, Dry, hly	ELw				
		2.0_ _ _													
		2.5_ _													
		3.0													
		_ 3.5_ _													
		_ 4.0_													
т	 ס <u>א</u> דו	4.5_	TFD AT	2.8m -	- I IMIT		VESTIG/								1
		METHOD		W	EATHERIN	NG		CONSISTENCY / D	ENSITY / ROO	CK STRENGT	1			SAM	PLES / TESTS
A	2	Auger Dr	illing -	EW	Extren	nely	VS	Very Soft	D	Dense		U()	Un	disturbe	ed (size in mm)
RT	ր Տ	Ripping	lyne nort	HW DW/	Highly Disting	ctlv	S F	Soft Firm	VD Fh	Very Dens Friable	e	D BS	Dis	sturbed	e
IM NN	s MLC	Rock Cor	port ing	MW	Mode	ratelv	St	Stiff	ப ELw	Extremelv	Low	DCP	ви Dv	namic Co	e one Penetrometer
RF	}	Rock Roll	er	SW	Slight	y y	VSt	Very Stiff	VLw	Very Low		SPT	Sta	andard P	enetrometer Test
ТВ	3	Toothed	Bucket	F	Fresh		Hd	Hard	Lw	Low		Ν	Nu	imber of	blows for SPT / 300mm
тс	-	Tri Cone					VL	Very Loose	M	Medium		VS	Va	ne Shear	
W	В	Wash Bo	re				L MD	LOOSE Medium Dense	H VH	High Verv Hiøh		A PP	Ac Po	id Sulfate	e sample etrometer (kPa)
,	V	WATER Water Le	vel					Mediani Dense	VII	VCIYINGI			10	ener i ell	
	•	Water Se	epage	Logge	ed By:	IW	ı	Date:	09/12/19	Chec	ed By:	НТ		Dat	te: 22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

	GPS: N: 28°40° 42.50° E: 155°31° 37.85°												
CL	CLIENT: INSTANT STEEL PTY LTD TEST PIT I.D.: TP 5												
PF	ROJEC	CT: RANKIN DRI	VE, BANGALOW		JOB	No.: GI	4901						
EC	QUIPI	MENT TYPE: 5.5	TONNE KUBOTA EXC	AVATOR	BUCKET S	ZE: 450mn	n TB			PAG	GE: 1 of	1	
		D G						/ R		(0			
Method	Water	aphic Log hepth (m)		Materi	al Description			onsistency lel. Density	Test	sample /	CP Blows 100mm	Structure and additional observation	
ΤB		-	(CH) Sandy CLAY: ⁻ Dry, Dark red/brow	Trace of silt, wn	High plasticity	/, Fine to coa	arse sand,	St				RESIDUAL	
			(CH) Silty CLAY: Tr Red/brown, Friabl	ace of sand, e	High plasticity	<i>γ,</i> Moist (w<	wp), Dark	Hd					
		- 1.5_ - 2.0_ -	(HW) BASALT: Trad Grey & orange bro fractured	ce of boulde wwn speckles	rs within layer								
		- - 25											
		-											
		_ 3.0_											
		- - 3.5											
		-											
		4.0_											
		4.5_											
TF	° 5 TE	RMINATED AT	2.3m – LIMIT OF IN	VESTIGATI	ON								
ДГ)	METHOD Auger Drilling	WEATHERING EW Extremely	CO VS V	NSISTENCY / D erv Soft	ENSITY / ROC ח	K STRENGTH		U()	Un	SAMI disturbe	PLES / TESTS d (size in mm)	
RT	-	Ripping Tyne	HW Highly	S Se	oft	VD	Very Dense		D	Dis	sturbed		
M	S	Mud Support	DW Distinctly	F Fi	irm	Fb	Friable		BS	Bu	lk Sample	e	
NN	VILC	Rock Coring	MW Moderately	St St	titf	ELW	Extremely I	low	DCP	Dy C+-	namic Co	one Penetrometer	
RR	(KOCK Roller	SVV Slightly F Fresh	vst V Hd н	ery Stitt ard	VLW LW	very LOW		5PT N	Sta Nu	indard Pe Imber of	enetrometer Test blows for SPT / 300mm	
TC		Tri Cone		VL V	ery Loose	M	Medium		VS	Va	ne Shear		
W	В	Wash Bore WATER	-	L Lo MD N	oose 1edium Dense	H VH	High Very High		A PP	Aci Po	id Sulfate cket Pen	e Sample etrometer (kPa)	
	▼	Water Level Water Seepage	Logged By: JW		Date:	09/12/19	Check	ed By:	НТ		Dat	te: 22/01/2020	

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

GPS: N: 28°40′ 47.30″ E: 153°31′ 3 CLIENT: INSTANT STEEL PTY ITD TEST DIT LD . TP 6													E: 153 ⁻ 31 ['] 36.47 ^{''}		
CL															
PF	ROJEC	T: RANKIN	DRIVE	, BAN	GALOW	!							JOB	No.: G	I 4901
EC	QUIPN	MENT TYPE:	5.5 TC	ONNE	KUBOT	A EXCA	VATOR	BUCKET	SIZE: 450m	m TB			PAG	GE: 1 of	f 1
Method	Water	Depth (m)	Graphic Log				Mat	erial Descriptio	n		Consistency / Rel. Density	Test	Sample /	DCP Blows / 100mm	Structure and additional observation
ΤB		- - 0.5_		(CH) Dry,	Sandy (Dark re	CLAY: T d/brow	race of s vn	ilt, High plastic	ity, Fine to co	oarse sand,	St				RESIDUAL *Lots of tree roots & organics
		- - 1.0_ - -		(DW High) BASAL ly fractu	.T: Fine ured	grained,	Dry, Grey & or	range brown	mottling,	ELw				
		_													
		1.5_ - -													
		2.0_													
		-													
		_													
		2.5_													
		_													
		3.0_													
		-													
		-													
		35													
		5.5_													
		_													
		4.0													
		_													
		-													
		_													
т) 6 TE) AT 1	4m	RELIC				ОСК						
	1	METHOD		WE	ATHERI			CONSISTENCY /	DENSITY / RC	CK STRENGT	Н			SAM	PLES / TESTS
AD)	Auger Drilling	g	EW	Extren	nely	VS	Very Soft	D	Dense	_	U()	Ur	ndisturbe	d (size in mm)
M	S	Kipping Tyne Mud Support	e t	нw DW	Distin	ctly	S F	Soft Firm	VD Fb	very Dens Friable	e	BS	Di	sturbed Ilk Sampl	e
NN	ЛLC	Rock Coring		MW Moderately St Stiff ELw Extrema SW Slightly VSt Very Stiff VLw Very Very						Extremely	Low	DCP	Dy	namic Co	one Penetrometer
RR	1	Rock Roller	kot	SW F	Slightl Fresh	У	VSt Hd	Very Stiff Hard	VLw	Very Low		SPT N	Sta Ni	andard P	enetrometer Test blows for SPT / 300mm
TC		Tri Cone	NEL	•	116311		VL	Very Loose	M	Medium		VS	Va	ane Shear	
W	В	Wash Bore					L	Loose	H A VIII	High		A	Ac	id Sulfate	e Sample
	•	WATER Water Lovel					MD	Wedium Dens	e VH	Very High		PP	Ро	ocket Pen	etrometer (KPa)
	•	Water Seepa	ige –		d Bv	1\//	1	Date:	09/12/19	Chec	ked Bv:	 Н1	<u>г</u>	Da	te: 22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

	GPS: N: 28°40′45.80″ E: 153°31′34.75″															
CL	CLIENT: INSTANT STEEL PTY LID TEST PIT I.D.: TP 7															
PR	PROJECT: RANKIN DRIVE, BANGALOW													JOB	No.: G	I 4901
EC	QUIPN	VENT TY	'PE: 5.5	TONNE	KUBOT	A EXCA	VATOR	BUCKE	T SIZE: 4	150mn	n TB			PAC	GE: 1 of	⁻ 1
-		D	Gr					1				Co / R		s		
Vlethod	Water	epth (m)	aphic Log				Ma	aterial Descripti	ion			nsistency el. Density	Test	ample /	CP Blows 100mm	Structure and additional observation
ΤВ		_		(CH Drv) Sandy (Dark re	CLAY: T	race of	silt, High plast	icity, Fine	e to coa	arse sand,	St				RESIDUAL
		-		(CH) Sandy	CLAY: T	race of	silt, High plast	icity, Fine	e to coa	arse sand,	Hd	PP>	400		
		_		Dry	, Dark re	d/brov	vn									
		0.5_														
		-	İ													
		_														
		1.0														
		1.0_														
		_														
		-														
		 1.5		(ну	V) BASAI	LT: Trac	e of bo	ulders within la	aver. Fine	graine	ed. Drv.	ELw				
		_		Gre	y & orar	nge bro	wn spec	kles of pale gr	ey & blac	ck, High	nly					
		-		frac	tured											
		2.0_		(DV	V) BASAL	LT: Fine	grained	l, Dry, Grey & d	orange bi	rown n	nottling,	VLw				
		-		Hig	nly fracti	ured						/Lw				
		-														
		_														
		2.5_														
		-														
		_														
		2.0														
		5.0_														
		_														
		-														
		3.5														
		_														
		-														
		_														
		4.0_														
		-														
		-														
ТР	 9 7 TF	4.5_	I TED AT	2.1m -				VEATHERFD	ROCK				I			
<u> </u>	1	METHOD	***	W	EATHERI	NG		CONSISTENCY	/ DENSIT	Y / ROC	CK STRENGT	Ή			SAM	PLES / TESTS
AD DT)	Auger Dr	illing Type	EW	Extren	nely	VS S	Very Soft		D	Dense	20	U()	Un	disturbe	d (size in mm)
M	5	Mud Sup	port	DW	Distin	ctly	F	Firm		Fb	Friable	bC.	BS	Bu	lk Sampl	e
NN	/ILC	Rock Cor	ing	MW	Mode	rately	St	Stiff		ELw	Extremely	/ Low	DCP	Dy	namic Co	one Penetrometer
RR TR		Rock Rol	ler Bucket	SW F	Slightl Fresh	y	VSt Hd	Very Stiff Hard		vlw Lw	very Low Low		SPT N	Sta Nu	andard Po Imber of	enetrometer Test blows for SPT / 300mm
TC		Tri Cone	JUCKEL				VL	Very Loose		М	Medium		VS	Va	ne Shear	
W	В	Wash Bo	re				L	Loose Modium Dor	250	H	High		A	Ac	id Sulfate	e Sample
	7	WATER Water Le	evel				טוא	iviealum Der	156	vп	very High		PP	20	cket Pen	enometer (KPa)
	•	Water Se	eepage	Logge	ed Bv:	JW	I	Date:	09/	12/19	Chec	ked Bv:	нт НТ		Dat	te: 22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

								GPS:	N:				E:
CL	IENT:	INSTANT STEE	L PTY LTD								TEST	F PIT I.D	D.: TP 8
PF	ROJEC	T: RANKIN DRI	VE, BANGALO	W							JOB	No.: G	I 4901
EC	QUIPN	MENT TYPE: 5.5	TONNE KUBC	TA EXC	AVATOR	BUCKET S	ZE: 450mm	n TB			PAG	GE: 1 of	⁻ 1
Method	Water	Graphic Log Depth (m)			Materia	al Description			Consistency / Rel. Density	Test	Sample /	DCP Blows / 100mm	Structure and additional observation
ΤB		-	(CH) Sand Dry, Dark	y CLAY: 1 red/brov	Γrace of silt, wn	High plasticity	/, Fine to coa	rse sand,	St				RESIDUAL
		- 0.5_ - - 1.0_ - 1.5_ - 2.0_ - - - - - - - - - - - - -	(CH) Silty (w <wp), r<="" td=""><td>CLAY: Trá</td><td>ace of sand &</td><td>& boulders, Hi</td><td>gh plasticity,</td><td>Moist</td><td>VSt/ Hd</td><td></td><td></td><td></td><td></td></wp),>	CLAY: Trá	ace of sand &	& boulders, Hi	gh plasticity,	Moist	VSt/ Hd				
		2.5_											
		3.0_ - - -											
		3.5_ _ _											
		4.0_ 4.5_											
TP	9 8 TE	RMINATED AT	2.5m – LIMI	T OF IN	VESTIGATI	ON							
AC RT M! RR TB TC W	D T S MLC R S C B	METHOD Auger Drilling Ripping Tyne Mud Support Rock Coring Rock Roller Toothed Bucket Tri Cone Wash Bore WATER Water Level	WEATHE EW Extr HW Higl DW Dist MW Moo SW Sligl F Fres	RING remely hly inctly derately htly sh	COI VS V4 S Sc F Fi St St VSt V4 Hd Ha VL V4 L Lc MD M	NSISTENCY / D ery Soft oft rm iff ery Stiff ard ery Loose bose ledium Dense	ENSITY / ROC D VD Fb ELw VLw Lw M H VH	K STRENGTH Dense Very Dense Friable Extremely I Very Low Low Medium High Very High	Low	U() D BS DCP SPT N VS A PP	Un Dis Bul Dyu Sta Nu Va Aci Poo	SAMI disturbe sturbed lk Sampl namic Co andard Po mber of ne Shear id Sulfate cket Pen	PLES / TESTS d (size in mm) e one Penetrometer enetrometer Test blows for SPT / 300mm , e Sample etrometer (kPa)
	•	Water Seepage	Logged By:	JW	[Date:	09/12/19	Check	ed By:	HT		Dat	te: 22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

						GPS:	N:	28°40′	45.28	"	E: 153°31′ 45.40″
CL	IENT:	INSTANT STEE	L PTY LTD						TEST	r Pit I.D	0.: TP 9
PR	ROJEC	T: RANKIN DRIV	VE, BANGALOW						JOB	No.: G	I 4901
50	אסוו ור			BUCKET SIZ	E . 450mm	TP			DAC	E. 1 of	1
	201FN	VENT TIPE, 5.5		BOCKET SIZ	E. 450mm	IID		1	FAC	JE. 101	
Method	Water	Graphic Log Depth (m)	Materi	al Description			Consistency / Rel. Density	Test	Sample /	DCP Blows / 100mm	Structure and additional observation
ΤB		- - 0.5_ - 1.0_	(CH) Silty CLAY: Trace of sand, red/brown	High plasticity,	Moist (w>	vp), Dark	F/ St				FILL *organics & stumps throughout
		_ _ 1.5_	(CH) Silty CLAY: Trace of sand, red/brown	High plasticity,	Moist (w>v	wp), Dark	VSt				RESIDUAL
	•	2.0_ - - 2.5_ - -	(CH) Silty CLAY: Trace of sand, Red/brown, Friable, Traces of	High plasticity, EW-HW: BASAL	Wet, Dark T very light	: & silty	Hd				
		-	(HW) BASALT: Trace of boulders Grey & orange brown speckles c	within layer, Fin of pale grey & bla	ne grained, [ack, Highly f	Dry, ractured	ELw				
		3.0_ - - 3.5_ - 4.0_ - 4.5_									
TP	• 9 TE	KIVIINATED AT	2.9m – LIMIT OF INVESTIGATI	UN			1			CV V	
AD RT MS RR TB TC WI	N - S MLC B B	VIETHOD Auger Drilling Ripping Tyne Mud Support Rock Coring Rock Roller Toothed Bucket Tri Cone Wash Bore WATER Water Level	WEATHERING CO EW Extremely VS V HW Highly S S DW Distinctly F F MW Moderately St S SW Slightly VSt V F Fresh Hd H VL V L Lu MD M	NSISTENCY / DEI ery Soft oft irm tiff ery Stiff ard oose Jedium Dense	NSITY / ROC D VD Fb ELw VLw Lw M H VH	K STRENGTH Dense Very Dense Friable Extremely I Very Low Low Medium High Very High	LOW	U() D BS DCP SPT N VS A PP	Un Dis Bu Dy Sta Nu Va Ac Po	SAMI disturbed Ik Sampl namic Co andard Po Imber of ne Shear id Sulfate cket Pen	PLES / TESTS d (size in mm) e one Penetrometer enetrometer Test blows for SPT / 300mm - e Sample etrometer (kPa)
	•	Water Seepage	Logged Bv: JW	Date:	09/12/19	Check	ed Bv:	НТ	-	Dat	te: 22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

										GPS:	N:	28°40′	45.50	"	E: 153°31′ 43.45″
CL	IENT	INSTANT STE	EEL P	PTY LTD									TEST	T PIT I.D	0.: TP 10
PF	ROJEC	T: RANKIN DF	RIVE.	, BANGAL	wc								JOB	No.: G	4901
EC	אסוו ור		E TO					T CI7E	. 4E0mn	а ТР			DAC	2E. 1 of	÷ 1
-	JOIPI	VIENT TTPE. 5.	.5 10			AVAIUN	BUCKE		. 4501111	IID			PAG	JE: 101	1
Method	Water	Graphic Log Depth (m)) - -			Ma	aterial Descript	ion			Consistency / Rel. Density	Test	Sample /	DCP Blows / 100mm	Structure and additional observation
ΤB		_ _		(CH) San Dry, Darl	dy CLAY: < red/bro	Trace of own	silt, High plast	ticity, F	ine to coa	arse sand,	St				RESIDUAL
		0.5_ _ 1.0_ 1.0_ 1.5_ 2.0_ 2.0_ 2.5_		(CH) Silty Red/brow	r CLAY: T wn	race of sa	oulders, High p and, High plast	plastici	ty, Moist	(w <wp),< td=""><td>VSt/ Hd Hd</td><td>PP=3 45</td><td>300- 50</td><td></td><td></td></wp),<>	VSt/ Hd Hd	PP=3 45	300- 50		
		-		orange/t BASALT v	orown & very ligh	red/brow & silty	n mottling, Fr	riable, ⁻	Traces of	EW-HW:					
		3.0_ - - 3.5_ - 4.0_ - 4.5_					CATION								
TF	P 10 T	ERMINATED	AT 2	2.9m – Lli	MIT OF	INVESTI	GATION		orm - 1			1			
AE RT M: NM RR TB TC W	METHOD WEATHERING AD Auger Drilling EW Extremely RT Ripping Tyne HW Highly MS Mud Support DW Distinctly NMLC Rock Coring MW Moderate RR Rock Roller SW Slightly TB Toothed Bucket F Fresh TC Tri Cone WATER W Water Level F JU						CONSISTENCY Very Soft Soft Firm Stiff Very Stiff Hard Very Loose Loose Medium De	Y / DEN	SITY / ROC D VD Fb ELw VLw Lw M H VH	K STRENGTH Dense Very Dense Friable Extremely Very Low Low Medium High Very High	l Low	U() D BS DCP SPT N VS A PP	Un Dis Bu Dy Sta Nu Va Ac Po	SAMI disturbed sturbed lk Sampl namic Co andard Pe imber of ne Shear id Sulfate cket Pen	PLES / TESTS d (size in mm) e one Penetrometer enetrometer Test blows for SPT / 300mm e Sample etrometer (kPa)
1	-	water seepage	:	Logged By	: JW		Date:	(19/12/19	Check	ced Bv:	нт		Dat	te: 22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

ENGINEERING LOG – TEST PIT PROFILE

									GPS:	N:	28°40′	44.95)"	E: 153°31′ 41.50″
CL	IENT:	INSTANT STE	EEL P	TY LTD								TEST	T PIT I.D). : TP 11
PR	ROJEC	T: RANKIN DR	RIVE,	BANGALOW	1							JOB	No.: G	I 4901
50	אסווור	AENT TVDE. 5	, 5 ТО					7E • 450mm				DAC		f 1
EC	JUIPI		.5 10			AVAION	BUCKET SI	ZE: 450mm	IID	1	1	PAG	JE. 10	
Method	Water	Graphic Log Depth (m)	-			Mater	rial Description			Consistency / Rel. Density	Test	Sample /	DCP Blows / 100mm	Structure and additional observation
ТΒ		-		(CH) Sandy (Dry, Dark re	CLAY: T d/brov	race of silt	, High plasticity	r, Fine to coa	arse sand,	St				RESIDUAL
		- 0.5_ - - -		(CH) Silty CL (w <wp), rec<="" td=""><td>AY: Tra d/brow</td><td>ace of sand n</td><td>& boulders, Hi</td><td>gh plasticity</td><td>, Moist</td><td>VSt/ Hd</td><td></td><td></td><td></td><td></td></wp),>	AY: Tra d/brow	ace of sand n	& boulders, Hi	gh plasticity	, Moist	VSt/ Hd				
		1.0_ - - - -												
		1.5_ _ _												
		2.0_ _ _												
		_ 2.5_ _												
		_ 3.0_												
		3.5_ - -												
		4.0_ _												
		_ 4.5												
TP	P 11 T	ERMINATED	AT 3	3.1m – LIMI	F OF R	EACH					1			
Δ٢	ו נו	METHOD Auger Drilling	F	WEATHERIN W Fytrer	NG nelv		DNSISTENCY / D	ENSITY / ROC ח	K STRENGTH	ł	11()	l In	SAM SAM	PLES / TESTS ed (size in mm)
RT	-	Ripping Tyne	H	HW Highly	ПСТУ	S S	Soft	VD	Very Dense	2	D	Dis	sturbed	
M	S	Mud Support	[DW Disting	ctly	F	Firm	Fb	Friable		BS	Bu	ılk Sampl	e
NN	VILC	Rock Coring		W Mode	rately	St St	Stiff	ELW	Extremely	Low	DCP	Dy	namic Co	one Penetrometer
RR TR	ς Ι	KOCK Koller	t F	svv Slighti Fresh	у	Hd H	very Suit Hard	VLW LW	very Low		N	Sta Nu	indard Po Imber of	blows for SPT / 300mm
TC		Tri Cone	` '	i i con		VL V	Very Loose	M	Medium		VS	Va	ine Shear	r
W	в •	Wash Bore WATER Water Level				L I MD I	Loose Medium Dense	H VH	High Very High		A PP	Ac Po	id Sulfate ocket Pen	e Sample Ietrometer (kPa)
	•	Water Seepage		ogged By:	JW	·	Date:	09/12/19	Check	ed By:	Н1	-	Dat	te: 22/01/2020

Form GI 003h Issue 3

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

									GPS:	N:				E:	
CL	IENT:	INSTANT S	TEEL F	TY LTD								BOR	EHOLE	I.D. :	BH 12
PR		T: RANKIN	DRIVE	, BANGALO	W							JOB	No.: G	4901	-a
FC			• GT-1	0				∕IFTER • 110)mm			PAG	F. 1 ∩	f 1	
			. 01 1				HOLE DIA		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Method	Water	Depth (m)	Graphic Log			Mate	rial Description			Consistency / Rel. Density	sample / Test		DCP Blows / 100mm	Stru	cture and additional observation
AD		 		(CH) Silty coarse sar	Sandy Cl nd, Moist	.AY: Trace (w <wp), f<="" td=""><td>of cobbles, Higl Red/brown</td><td>ו plasticity, F</td><td>ine to</td><td>St</td><td></td><td></td><td></td><td>RESI</td><td>DUAL</td></wp),>	of cobbles, Higl Red/brown	ו plasticity, F	ine to	St				RESI	DUAL
				(HW) BAS orange/br	ALT: Trac	e of fine g :tling	ravel, Fine to co	barse grained	d, Grey &	ELw					
		3.0_ - - 3.5_ - 4.0_ - 4.5_													
Bŀ	1 12 1	ERMINAT	ED AT	2.8m – LIN	/IT OF II	NVESTIGA	ATION								
AD C MS NN RR	METHODWEATHERINGADAuger DrillingEWExtremelyCCasingHWHighlyMSMud SupportDWDistinctlyNMLCRock CoringMWModeratelyRRRock RollerSWSlightly					CU VS F St VSt	ONSISTENCY / DI Very Soft Soft Firm Stiff Very Stiff	ENSITY / ROC D VD Fb ELw VLw	K STRENGTH Dense Very Dense Friable Extremely Very Low	Low	U() D BS DCP SPT	Un Dis Bul Dyr Sta	SAMI disturbe turbed k Sample namic Co indard Pe	PLES / d (size e one Per enetro	TESTS in mm) netrometer meter Test
TC		Tri Cone		F Fres	, h	Hd	Hard	Lw	Low		N	Nu	mber of	blows	for SPT / 300mm
W	В	Wash Bor	e			VL	Very Loose	Μ	Medium		VS	Va	ne Shear		
.	-	WATER				L	Loose Medium Donco	H	High Vory Ligh		A	Aci	d Sulfate	e Samp	lle ator (kPa)
	>	vvater Level Water Seepa	age	Logged Bv	ΠΔΙΛ		Date:	09/12/19		ed By:	<u> ^{ге}</u> нт	20	Dat	te:	22/01/2020
1			1		27.00			,,,					1 2 4		, 01, 2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

										GPS:	N:				E:	
CL	IENT:	INSTAN	T STEEL	PTY L	ГD								BOR	EHOLE	I.D. :	BH 13
PR	OJEC	T: RANI	KIN DRIN	/E, BAI	NGALOW	/							JOB	No.: GI	4901	-a
EC	UIPN	IENT TY	PE: GT-	10				HOLE DIA	METER: 110	mm			PAG	iE: 10	f 1	
Method	Water	Depth (m)	Graphic Log				Mate	erial Description			Consistency / Rel. Density	sampie / Test	Comple / Tost	DCP Blows / 100mm	Stru	cture and additional observation
AD		- - 0.5_ -		(C coa	H) Silty Sa arse sand,	andy CL , Moist	AY: Trace (w <wp),< td=""><td>e of cobbles, Hig Red/brown</td><td>n plasticity, F</td><td>ine to</td><td>St</td><td></td><td></td><td></td><td>RESI</td><td>DUAL</td></wp),<>	e of cobbles, Hig Red/brown	n plasticity, F	ine to	St				RESI	DUAL
				(CF coa mc	1) Silty Sa arse sand, ottling	ndy CL	AY: Trace (w <wp),∣< td=""><td>of fine gravel, H Red/brown with</td><td>igh plasticity grey & oran</td><td>r, Fine to ge/brown</td><td>VSt</td><td></td><td></td><td></td><td></td><td></td></wp),∣<>	of fine gravel, H Red/brown with	igh plasticity grey & oran	r, Fine to ge/brown	VSt					
		3.0_ 3.5_ 4.0_ 4.5_														
BH	1 13 1	ERMIN	ATED A	T 2.8r	n – LIMI	t of II	VESTIG	ATION								
METHOD WEATHERING AD Auger Drilling EW Extremely C Casing HW Highly MS Mud Support DW Distinctly NMLC Rock Coring MW Moderately RR Rock Roller SW Slightly TC Tri Cone F Fresh WB Wash Bore WATER Vater Level ▶ Water Seepage Logged By: DAW						NG nely ctly rately y	VS S F St VSt Hd VL L MD	CONSISTENCY / D Very Soft Soft Firm Stiff Very Stiff Hard Very Loose Loose Medium Dense	ENSITY / ROC D VD Fb ELw VLw Lw M H VH	K STRENGTH Dense Very Dense Friable Extremely I Very Low Low Medium High Very High	Low	U() D BS DCP SPT N VS A PP	Un Dis Bul Dyı Sta Nu Vaı Aci Poo	SAMI disturbed turbed k Sample namic Co ndard Pe mber of ne Shear d Sulfate cket Pen	PLES / d (size e one Per enetro blows e Samp etrome	TESTS in mm) netrometer meter Test for SPT / 300mm le eter (kPa)
		valer Je	chage	Logg	ed By:	DAW		Date:	09/12/19	Check	ed By:	HT		Dat	te:	22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

ENGINEERING LOG – BOREHOLE PROFILE

										GPS:	N:				E:	
CL	IENT:	INSTAN	IT STEEL	PTY LT	D								BOR	EHOLE	I.D. :	BH 14
PR		T: RAN		/E. BAN	IGALOW	,							JOB	No.: GI	4901·	a
				10					4575D. 444						6.4	-
EC	LOIPN		PE: GI-	10				HOLE DIAN	VIETER: 110	Jmm	<u> </u>		PAG	E: 10	T I	
Method	Water	Depth (m)	Graphic Log	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Mate	rial Description			Consistency / Rel. Density	Sample / Test	Comple / Test	DCP Blows / 100mm	Stru	cture and additional observation
AD				(CF coa mo	I) Silty Sa Irse sand ttling	ndy CL	۹Y: Trace (w <wp), td="" ۱<=""><td>of fine cobbles, Grey with red/b</td><td>High plastici rown & orar</td><td>ty, Fine to Ige</td><td>St/ VSt</td><td>PP=; 30</td><td>250- 00</td><td></td><td>FILL</td><td></td></wp),>	of fine cobbles, Grey with red/b	High plastici rown & orar	ty, Fine to Ige	St/ VSt	PP=; 30	250- 00		FILL	
		_ 2.0_ _		(C⊦ Or	I) Silty Sa ange/bro	ndy CL	AY: High p Grey mott	olasticity, Fine to ling	sand, Mois	t (w <wp),< td=""><td>St/ VSt</td><td>-</td><td></td><td></td><td>RESI</td><td>DUAL</td></wp),<>	St/ VSt	-			RESI	DUAL
		2.5		(CH Gre	l) Silty Sa ?y	ndy CL	ΑΥ: High p	lasticity, Fine sa	ınd, Moist (v	v <wp),< td=""><td>St/ VSt</td><td></td><td></td><td></td><td></td><td></td></wp),<>	St/ VSt					
		3.0_ 3.5_ 4.0_ 4.0_														
BH	1 14 1		ATED A	T 2.8n	n – LIMI	T OF II	VESTIG	ATION			I	1		1		
AD C MS NN RR TC WE	METHOD WEATHERING AD Auger Drilling EW Extremely C Casing HW Highly MS Mud Support DW Distinctly NMLC Rock Coring MW Moderatel RR Rock Roller SW Slightly TC Tri Cone F Fresh WB Wash Bore WATER ▼ Water Level Logged But D					NG nely ctly rately y	VS S F St VSt Hd VL L MD	ONSISTENCY / DI Very Soft Soft Firm Stiff Very Stiff Hard Very Loose Loose Medium Dense	ENSITY / ROC D VD Fb ELw VLw Lw M H VH	K STRENGTH Dense Very Dense Friable Extremely Very Low Low Medium High Very High	l 2 Low	U() D BS DCP SPT N VS A PP	Un Dis Bul Dyr Sta Nu Var Aci Poo	SAMI disturbe turbed k Sample namic Co ndard Pe mber of ne Shear d Sulfate cket Pen	PLES / ⁻ d (size e one Per enetroi blows - e Samp etrome	rESTS in mm) hetrometer neter Test for SPT / 300mm le ter (kPa)
	•	Water Se	eepage	Logg	ed By:	DAW	,	Date:	09/12/19	Check	ed By:	HT	•	Dat	te:	22/01/2020

Form GI 003a Issue 3

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

										GPS:	N:				E:	
CL	IENT:	INSTAN	IT STEEL	PTY LT	D								BOR	EHOLE	I.D. :	BH 15
PR	OJEC	T: RANI	KIN DRIV	'E, BAN	IGALOW	1							JOB	No.: G	I 4901	-a
EC	UIPN	IENT TY	PE: GT-	10				HOLE DIA	METER: 110)mm			PAG	GE: 10	f1	
Method	Water	Depth (m)	Graphic Log				Mate	erial Description			Consistency / Rel. Density		Cample / Tost	DCP Blows / 100mm	Stru	cture and additional observation
AD		-		(CH coa) Silty Sa rse sand	ndy CL/ , Moist	AY: Trace (w <wp),< td=""><td>of fine cobbles, Grey with red/b</td><td>High plastici rown & oran</td><td>ty, Fine to ge</td><td>St/ VSt</td><td></td><td></td><td></td><td>FILL</td><td></td></wp),<>	of fine cobbles, Grey with red/b	High plastici rown & oran	ty, Fine to ge	St/ VSt				FILL	
		- 0.5_ - - 1.0_ -		(CH Dar) Silty Sa k orange	ndy CL/ & brov	AY: High wn mottli	plasticity, Fine sa	ınd, Moist (v	v>wp),	St/ VSt				RESI	DUAL
		_ 1.5_ _														
		-		(CH Ora) Silty Sa nge/bro	ndy CL/ wn	AY: High	plasticity, Fine sa	nd, Moist (v	v>wp),	St/ VsT					
		2 0			0											
		-														
		2.5														
		_														
		3.0														
		_														
		-														
		3.5														
		_														
		-														
		40														
		-														
		-														
B⊦	 15 T	4.5_ ERMIN	ATED A	T 2.8m	n – LIMI		VESTIG	ATION			I	<u> </u>		I		
	N	VETHOD		W	EATHERI	NG	(CONSISTENCY / D	ENSITY / ROC	K STRENGTH	ł			SAM	PLES /	TESTS
AD)	Auger	Drilling	EW HW	Extren Highly	nely	VS S	Very Soft Soft	D VD	Dense Very Dense	2	U() D	Un Dis	disturbe turbed	d (size	in mm)
MS	5	Mud S	, upport	DW	Disting	ctly	F	Firm	Fb	Friable	-	BS	Bu	lk Sampl	e	
NN	ЛLC	Rock C	oring	MW	Mode	rately	St	Stiff	ELw	Extremely	Low	DCP	Dy	namic Co	one Pe	netrometer
RR		Rock R Tri Cor	oller	SW F	Siighti Fresh	У	vSt Hd	very Stiff Hard	VLW LW	very Low Low		N	Sta Nu	mber of	enetro blows	for SPT / 300mm
W	B	<u>Wa</u> sh I	Bore	•			VL	Very Loose	M	Medium		VS	Va	ne Shear		
	_	WATER					L	Loose	H	High		A	Aci	id Sulfate	e Samp	ile
	7 ►	Water Le	enage			D (1)	IVID	ivieaium Dense	VH	very High			. Po	cket Pen	etrome	
		valei Je	chage	Logge	ea By:	DAW		Date:	09/12/19	Check	ed By:	HT		Da	te:	22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

		0	SPS: N:			E:
CLIENT: INSTANT STEEL	PTY LTD			В	OREHOLE	I.D.: BH 16
PROJECT: RANKIN DRIV	'E, BANGALOW			J	OB No.: GI	4901-a
EQUIPMENT TYPE: GT-	10	HOLE DIAMETER: 110mm	l	F	PAGE: 1 o	f 1
Graphic Log Depth (m) Water Method	Materia	l Description	Consistency / Rel. Density	- Sample / Test	DCP Blows / 100mm	Structure and additional observation
AD	(CH) Silty Sandy CLAY: Trace of coarse sand, Moist (w <wp), re<="" td=""><td>cobbles, High plasticity, Fine t J/brown & grey mottling</td><td>o St</td><td></td><td></td><td>FILL</td></wp),>	cobbles, High plasticity, Fine t J/brown & grey mottling	o St			FILL
- - 1.0_ - - - 1.5_ -	(CH) Silty Sandy CLAY: High pla: Dark orange & brown mottling	ticity, Fine sand, Moist (w>w	o), St/ VSt			RESIDUAL
2.0_ - - - 2.5_ - - - - -	(CH) Silty Sandy CLAY: High pla Orange/brown	ticity, Fine sand, Moist (w>w	p), St/ VSt			
3.0_ - - - - - - - - - - - - - - - - - - -						
BH 16 TERMINATED A	T 2.8m – LIMIT OF INVESTIGAT	ION				
METHOD AD Auger Drilling C Casing MS Mud Support NMLC Rock Coring RR Rock Roller TC Tri Cone WB Wash Bore WATER Vater Level ▶ Water Seenage	WEATHERING CON EW Extremely VS Ve HW Highly S So DW Distinctly F Fin MW Moderately St Sti SW Slightly VSt Ve F Fresh Hd Ha VL Ve L Lo MD M M M	ISISTENCY / DENSITY / ROCK STI ry Soft D Der ft VD Ver m Fb Fria ff ELw Ext ry Stiff VLw Ver rd Lw Lov ry Loose M Me ose H Hig edium Dense VH Ver	RENGTH sse y Dense ble remely Low y Low / dium h y High	U() D BS DCP SPT N VS A PP	SAMI Undisturbed Disturbed Bulk Sample Dynamic Co Standard Pe Number of Vane Shear Acid Sulfate Pocket Pen	PLES / TESTS d (size in mm) e one Penetrometer enetrometer Test blows for SPT / 300mm e Sample etrometer (kPa)

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

										GPS:	N:				E:	
CL	IENT:	INSTAN	T STEEL	PTY LT	D								BOR	EHOLE	I.D. :	BH 17
PR	ROJEC	T: RANI	KIN DRIV	'E, BAN	IGALOW	,							JOB	No.: GI	4901	-a
EC	QUIPN	ИЕМТ ТҮ	PE: GT-	10				HOLE DIAN	METER: 110)mm			PAG	iE: 10	f 1	
Method	Water	Depth (m)	Graphic Log				Mate	erial Description			Consistency / Rel. Density	sample / Lest		DCP Blows / 100mm	Strue	cture and additional observation
AD		_ _ 0.5_		(CH coa mo) Silty Sa rse sand ttling	ndy CL/ , Moist	AY: Trace (w <wp),< th=""><th>of fine cobbles, Grey with red/b</th><th>High plastici rown & oran</th><th>ty, Fine to ge</th><th>St</th><th></th><th></th><th></th><th>FILL</th><th></th></wp),<>	of fine cobbles, Grey with red/b	High plastici rown & oran	ty, Fine to ge	St				FILL	
		 1.5		(CH Da) Silty Sa rk orange	ndy CL/ e & bro	AY: High wn mottl	olasticity, Fine to	sand, Moist	t (w <wp),< th=""><th>St/ VSt</th><th></th><th></th><th></th><th>RESI</th><th>DUAL</th></wp),<>	St/ VSt				RESI	DUAL
		 2.0 2.5		(CH Gre) Silty Sa Y	ndy CL/	ΑΥ: High _I	olasticity, Fine sa	ınd, Moist (v	v>wp),	VSt					
		3.0_ 3.5_ 4.0_ 4.5_														
BH	1 17 1	FERMIN	ATED A	T 2.8n	า – LIMI	t of In	VESTIG	ATION								
AD C MS NN RR TC WI	METHOD WEATHERING AD Auger Drilling EW Extremely C Casing HW Highly MS Mud Support DW Distinctly NMLC Rock Coring MW Moderatel RR Rock Roller SW Slightly TC Tri Cone F Fresh WB Wash Bore WATER ▼ Water Level Logged By: DA							CONSISTENCY / DI Very Soft Soft Firm Stiff Very Stiff Hard Very Loose Loose Medium Dense	ENSITY / ROC D VD Fb ELw VLw Lw M H VH	K STRENGTH Dense Very Dense Friable Extremely Very Low Low Medium High Very High	Low	U() D BS DCP SPT N VS A PP	Un Dis Bul Dyr Sta Nu Var Aci Poo	SAMI disturbed turbed k Sample namic Co ndard Pe mber of ne Shear d Sulfate cket Pen	PLES / - d (size e one Per enetroi blows e Samp etrome	rESTS in mm) netrometer meter Test for SPT / 300mm le eter (kPa)
	-	water se	epage	Logg	ed By:	DAW		Date:	09/12/19	Check	ed By:	HT		Dat	te:	22/01/202

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

[GPS: N:		E:	
CLIENT: INSTANT STEEL	PTY LTD			E	BOREHOLE I.D	.: BH 18
PROJECT: RANKIN DRIV	E, BANGALOW			ſ	OB No.: GI 49	901-a
EQUIPMENT TYPE: GT-	10	HOLE DIAMETER: 110m	m		PAGE: 1 of 1	
Graphic Log Depth (m) Water Method	Materia	l Description	Consistency / Rel. Density	- Sample / Test	DCP Blows / 100mm	Structure and additional observation
→ → → → → → → → → → → → → → → → → → →	(CH) Silty Sandy CLAY: High pla Dark grey & brown mottling (CI) Silty Sandy CLAY: Medium p Gravel, Moist, Grey & orange/b	sticity, Fine sand, Moist (w> plasticity, Fine to coarse sand prown mottling	wp), J & St/ VSt		R	IESIDUAL
3.0_ - - - - 3.5_ - - - - 4.0_ - - - - - - - - - - - - - - - - - - -						
BH 18 TERMINATED A	T 2.8m – LIMIT OF INVESTIGAT	ION				
METHOD AD Auger Drilling C Casing MS Mud Support NMLC Rock Coring RR Rock Roller TC Tri Cone WB Wash Bore WATER Water Level ► Water Seepage	WEATHERING CON EW Extremely VS Ve HW Highly S So DW Distinctly F Fir MW Moderately St Sti SW Slightly VSt Ve F Fresh Hd Ha VL Ve L Lo MD Md Ma	VSISTENCY / DENSITY / ROCK S ery Soft D D ft VD Vo rm Fb Fr iff ELw Ex ery Stiff VLw Vo ard Lw Lo ery Loose M M ose H H edium Dense VH Vo Date: 09/12/19	TRENGTH ense ery Dense iable dtremely Low ery Low w ledium igh ery High Checked Bv :	U() D BS DCP SPT N VS A PP	SAMPLE Undisturbed (s Disturbed Bulk Sample Dynamic Cone Standard Pene Number of blo Vane Shear Acid Sulfate Sa Pocket Penetre	S / TESTS size in mm) Penetrometer etrometer Test ws for SPT / 300mm ample ometer (kPa) 22/01/2020

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

			GPS: I	N:		E:
CLIENT: INSTANT STEEL PTY LT	TD				BOREHOI	LE I.D.: BH 19
PROJECT: RANKIN DRIVE, BAN	NGALOW				JOB No.:	GI 4901-a
EQUIPMENT TYPE: GT-10		HOLE DIAMETER: 110r	nm		PAGE: 1	of 1
Graphic Log Depth (m) Water Method	Material	Description		Consistency /	/ 100mm / Sample / Test	Structure and additional observation
	H) Silty Sandy CLAY: High plas ey/brown H) Silty Sandy CLAY: High plas ange/brown	ticity, Fine sand, Moist (w ticity, Fine sand, Moist (w	>wp),	St/ VSt		RESIDUAL
3.0_ - - - - - - - - - - - - - - - - - - -						
BH 19 TERMINATED AT 2.8m	n – LIMIT OF INVESTIGATI	ON				
METHOD WH AD Auger Drilling EW C Casing HW MS Mud Support DW NMLC Rock Coring MW RR Rock Roller SW TC Tri Cone F WB Wash Bore WATER Water Level ▶ Water Seepage	/EATHERING CONS Extremely VS Ver Highly S Soft Distinctly F Firm Moderately St Stiff Slightly VSt Ver Fresh Hd Har VL Ver L Loo MD Me	SISTENCY / DENSITY / ROCK y Soft D t VD n Fb f ELw y Stiff VLw d Lw y Loose M ise H dium Dense VH	STRENGTH Dense Very Dense Friable Extremely Low Very Low Low Medium High Very High	U() D BS DCP SPT N VS A PP	SA Undistur Disturbe Bulk Sam Dynamic Standarc Number Vane She Acid Sulf Pocket P	MPLES / TESTS bed (size in mm) d pple cone Penetrometer d Penetrometer Test of blows for SPT / 300mm ear fate Sample enetrometer (kPa)

SCOPE These standard notes may be of assistance when understanding terms and recommendations given in this report. These notes are for general conditions and not all terms given may be of concern to the report attached. The descriptive terms adopted by Geotech Investigations Pty Ltd are given below and are largely consistent with Australian Standards AS1726-1993 'Geotechnical Site Investigations'.

CLIENT can be described and is limited to the financier of this geotechnical investigation.

LEGALITY and privacy of this document is based on communication between Geotech Investigations Pty Ltd and the client. Unless indicated otherwise the report was prepared specifically for the client involved and for the purposes indicated by the client. Use by any other party for any purpose, or by the client for a different purpose, will result in recommendations becoming invalid and Geotech Investigations Pty Ltd will hold no responsibility for problems which may arise.

GEOTECHNICAL REPORTS are predominantly derived using professional estimates determined from the results of fieldwork, in-situ and laboratory testing and experience from previous investigations in the area, from which geotechnical engineers then formulate an opinion about overall subsurface conditions. The client must be made aware that the investigations are undertaken to ensure minimal site impact using testpits or small diameter boreholes and soil conditions on-site may vary from those encountered during the investigation.

CLIENTS RESPONSIBILITY to notify this office should there be adjustments in proposed structure/location or inconsistencies with material descriptions given in this report and those encountered on site. Geotech Investigations Pty Ltd is able to provide a range of services from on-site inspections to full project supervision to confirm recommendations given in the report.

CSIRO Publication BTF 18 'Foundation Maintenance and Footing Performance: A Homeowner's Guide' explains how to adequately maintain drainage during and post construction which lies as the responsibility of the client. Suitable drainage ensures recommendations given in this report remain valid.

INVESTIGATION METHODS adopted by Geotech Investigations Pty Ltd are designed to incorporate individual project-specific factors to obtain information on the physical properties of soil and rock around a site to design earthworks and foundations for proposed structures. The following methods of investigation currently adopted by this company are summarised below:-

HAND AUGER – investigations enable field work to be undertaken where access is limited. The materials must have sufficient cohesion to stand unsupported in an unlined borehole and there must be no large cobbles boulders or other obstructions which would prevent rotation of the auger.

TEST-PITS – investigations are carried out with an excavator or backhoe, allowing a visual inspection of sub-surface material in-situ and from samples removed. The limit of investigation is restricted by the reach of the excavator or backhoe.

CONTINUOUS SPIRAL FLIGHT AUGERING TECHNIQUES – investigations are advanced by pushing a 100mm diameter spiral into the sub-surface and withdrawing it at regular intervals to allow sampling or testing as it emerges.

WASH BORING – investigations are advanced by removing the loosened soil from the borehole by a stream of water or drilling mud issuing from the lower end of the wash pipe which is worked up and down or rotated by hand in the borehole. The water or mud carries the soil up the borehole where it overflows at ground level where the soil in suspension is allowed to settle in a pond or tank and the fluid is re-circulated or discharged to waste as required.

NON-CORE ROTARY DRILLING – investigations are advanced using a rotary bit with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from feel and rate of penetration.

ROTARY MUD DRILLING – is carried out as above using mud as support and circulating fluid for the borehole drilling. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling.

CONTINUOUS CORE DRILLING – investigations are carried out in rock material, specimens of rock in the form of cylindrical cores are recovered from the drill holes by the means of core barrel. The core barrel is provided at its lower end with a detachable core bit which carries industrial diamond chips in a matrix of metal. Rotation of the barrel by means of the drill rods causes the core bit to cut an annulus in the rock, the cuttings being washed to the surface by a stream of pumped down the hollow drill rods.

TESTING METHODS adopted by Geotech Investigations Pty Ltd to determine soil properties include but not limited to the following:-

U50 – Undisturbed samples are obtained by inserting a 50mm diameter thin-walled steel tube into the material and withdrawing with a sample of the soil in a moderately undisturbed condition.

PP – Pocket Penetrometer tests are commonly used on thin walled tube samples of cohesive soils to evaluate consistency and approximate unconfined compressive strength of saturated cohesive soils. They may also be used for the same purpose in freshly excavated trenches.

VS – Vane Shear test are commonly used in-situ or on thin walled tube samples of cohesive soils by introducing the vane into the material where the measurement of the undrained shear strength is required. Then the vane is rotated and the torsional force required to cause shearing is calculated.

DCP – Dynamic Cone Penetrometer tests are commonly used in-situ to measure the strength attributes of penetrability and compaction of sub-surface materials.

SPT – Standard Penetration Tests are commonly uses to determine the density of granular deposits but are occasionally used in cohesive material as a means of determining strength and also of obtaining a relatively undisturbed sample. Samples and results are obtained by driving a 50mm diameter split tube through blows from a slide hammer with a weight of 63.5kg falling through a distance of 760mm. Blow counts are recorded for 150mm intervals with the sum of the number of blows required for the second and third 150mm of penetration is termed the "standard penetration resistance" or the "N-value".

GEOLOGICAL ORIGINS of sub-surface material plays a considerable role in the development of engineering parameters and have been summarised as follows:-

FILL – materials are man made deposits, which may be significantly more variable between test locations than naturally occurring soils.

RESIDUAL – soils are present in a region as a result of weathering over the geological time scale.

COLLUVIAL – soils have been deposited recently, on the geological time scale, as soils being transported slowly down slope due to gravitational creep.

ALLUVIAL - soils have been deposited recently, on the geological time scale, as water borne materials.

AEOLIAN – soils have been deposited recently, on the geological time scale, as wind borne materials.

SOIL DESCRIPTION is based on an assessment of disturbed samples, as recovered from boreholes and excavations, and from undisturbed materials. Soil descriptions adopted by Geotech Investigations Pty Ltd are largely consistent with AS 1726-1993 '*Geotechnical Site Investigation*'. Soil types are described according to the predominating particle size, qualified by the grading of other particles present on the following bases detailed in Table 1.

COHESIVE SOILS ability to hold moisture known as its liquid limit is the state of a soil when it goes from a solid state to a liquid state described in Table 2

TABLE 1		TABLE 2	
Soil Classification	Particle Size	Descriptive Type	Range of Liquid Limit %
Clay	< 0.002 mm	Of low plasticity	≤ 35
Silt	0.002 – 0.06 mm	Of medium plasticity	> 35 ≤ 50
Sand	0.06 – 2.00 mm	Of high plasticity	> 50
Gravel	2.00 – 60.0 mm		

Furthermore to soil description cohesive soils are described on their strength (assessed in conjunction with penetration tests) and liquid limit. Non-cohesive soil strengths are described by their density index. With descriptions for cohesive and non-cohesive soils summarised in Table 3.

TABLE 3

COHESIVE SOILS		NON-COHESIVE SOILS	
Term	Undrained Shear Strength kPa	Term	Density Index %
Very soft	≤ 12	Very Loose	≤15
Soft	> 12 ≤25	Loose	> 15 ≤35
Firm	> 25 ≤50	Medium Dense	> 35 ≤65
Stiff	> 50 ≤100	Dense	> 65 ≤85
Very Stiff	> 100 ≤200	Very Dense	> 85
Hard	> 200		

Description of terms used to describe material portion are summarised in Table 4.

TABLE 4			
COARSE GRAINIED SOILS		FINE GRAINED SOILS	
% Fines	Modifier	% Coarse	Modifier
≤ 5	Omit or 'trace'	≤ 15	Omit or 'trace'
> 5 ≤12	Describe as 'with'	> 15 ≤30	Describe as 'with'
> 12	Prefix soil as 'silty/clayey'	> 30	Prefix soil as 'sandy/gravelly'

ROCK DESCRIPTIONS are determined from disturbed samples or specimens collected during field investigations. A rocks presence of defects and the effects of weathering are likely to have a great influence on engineering behaviour.

Rock Material Weathering Classification is summarised in Table 5.

TADIE	-
IABIE	`
	•

TABLE 5		
Term	Symbol	Definition
Residual Soils	-	Soil developed on extremely weathered rock; the mass structure and
		substance fabric are no longer evident; there is a large change in volume
		but the soil has not been significantly transported
Extremely	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it
Weathered Rock		either disintegrates or can be remoulded, in water
Distinctly	DW	Rock strength usually changed by weathering. The rock may be highly
Weathered Rock		discoloured, usually by iron staining. Porosity may be increased by
		leaching, or may be decreased due to decomposition of weathering
		products in pores
Slightly Weathered	SW	Rock is slightly discoloured but shows little or no change of strength from
Rock		fresh rock
Fresh rock	FR	Rock shows no signs of decomposition or staining

Rock Material Strength Classification is summarised in Table 6.

TA	BL	Ε.	6

Term	Symbol	Point load index (MPa) I _s 50	Field guide to strength
Extremely Low	EL	≤0.03	Easily remoulded by hand to a material with soil properties
Very Low	VL	>0.03 ≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3cm thick can be broken by finger pressure
Low	L	>0.1 ≤0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling
Medium	М	>0.3 ≤1.0	Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty
High	Н	>1.0 ≤3.0	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer
Very High	VH	>3.0 ≤10	Hand specimen breaks with pick after more than one blow; rock rings under hammer
Extremely High	EH	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer

Rock Material Defect Shapes are summarised in Table 7.

Term	Description
Planar	The defect does not vary in orientation.
Curved	The defect has a gradual change in orientation
Undulating	The defect has a wavy surface
Stepped	The defect has one or more well defined steps.
Irregular	The defect has many sharp changes of orientation
Smooth	The defect has a flat even finish
Rough	The defect has a irregular disoriented finish

TABLE 7

Rock Material Texture and Fabric are summarised in Table 8.

TABLE 8				
Geological	Mass	ive	Layered	
Description			(Bedded foliate cleaved)	
Diagram				
Fabric Type	Effectively homogenous and isotropic. Bulky or equi-dimensional grains uniformly distributed	Effectively homogeneous and isotropic. Elongated	Effective homogeneous with planar anisotropy. Elongated or tabular grains or pores in a layered arrangement	

Rock Material Defect Type is summarised in Table 9

TABLE 9		
Term	Definition	Diagram
Bedding	Signifying existence of beds or laminate. Planes dividing sedimentary rocks of the same or different lithology. Structure occurring in granite and similar rocks evident in a tendency to split more or less horizontally to the land surface	
Cross Bedding	Also called cross-lamination or false bedding. The structure commonly present in granular sedimentary rocks, which consists of tabular, irregularly lenticular or wedge-shaped bodies lying essentially parallel to the general stratification and which them selves show pronounced lamination structure in which the laminae are steeply inclined to the general bedding.	
Crushed Seam	A fracture at a more or less acute angle to applied force generally with some pulverized material along its surface	
Joint	A fracture in rock, generally more or less vertical or transverse to bedding, along which no appreciable movement has occurred.	
Parting	A small joint in rock or a layered rock where the tendency of crystals to separate along certain planes that are not true cleavage planes.	
Sheared Zone	A fracture that results from stresses which tend to shear one part of a specimen past the adjacent part	

APPENDIX C

AGS AUSTRALIAN GEOGUIDE LR7 (LANDSLIDE RISK) GUIDELINES TO GOOD AND BAD HILLSIDE PRACTICES

DRILLING

AUSTRALIAN GEOGUIDE LR7 (LANDSLIDE RISK)

LANDSLIDE RISK

Concept of Risk

Risk is a familiar term, but what does it really mean? It can be defined as "a measure of the probability and severity of an adverse effect to health, property, or the environment." This definition may seem a bit complicated. In relation to landslides, geotechnical practitioners (GeoGuide LR1) are required to assess risk in terms of the likelihood that a particular landslide will occur and the possible consequences. This is called landslide risk assessment. The consequences of a landslide are many and varied, but our concerns normally focus on loss of, or damage to, property and loss of life.

Landslide Risk Assessment

Some local councils in Australia are aware of the potential for landslides within their jurisdiction and have responded by designating specific "landslide hazard zones". Development in these areas is often covered by special regulations. If you are contemplating building, or buying an existing house, particularly in a hilly area, or near cliffs, go first for information to your local council.

Landslide risk assessment must be undertaken by

<u>a geotechnical practitioner</u>. It may involve visual inspection, geological mapping, geotechnical investigation and monitoring to identify:

- potential landslides (there may be more than one that could impact on your site)
- the likelihood that they will occur
- the damage that could result
- the cost of disruption and repairs and
- the extent to which lives could be lost.

Risk assessment is a predictive exercise, but since the ground and the processes involved are complex, prediction tends to lack precision. If you commission a

landslide risk assessment for a particular site you should expect to receive a report prepared in accordance with current professional guidelines and in a form that is acceptable to your local council, or planning authority.

Risk to Property

Table 1 indicates the terms used to describe risk to property. Each risk level depends on an assessment of how likely a landslide is to occur and its consequences in dollar terms. "Likelihood" is the chance of it happening in any one year, as indicated in Table 2. "Consequences" are related to the cost of repairs and temporary loss of use if a landslide occurs. These two factors are combined by the geotechnical practitioner to determine the Qualitative Risk.

TABLE 2: LIKELIHOOD	2: LIKELIHOOD
---------------------	---------------

Likelihood	Annual Probability
Almost Certain	1:10
Likely	1:100
Possible	1:1,000
Unlikely	1:10,000
Rare	1:100,000
Barely credible	1:1,000,000

The terms "unacceptable", "may be tolerated", etc. in Table 1 indicate how most people react to an assessed risk level. However, some people will always be more prepared, or better able, to tolerate a higher risk level than others.

Some local councils and planning authorities stipulate a maximum tolerable level of risk to property for developments within their jurisdictions. In these situations the risk must be assessed by a geotechnical practitioner. If stabilisation works are needed to meet the stipulated requirements these will normally have to be carried out as part of the development, or consent will be withheld.

TABLE 1: RISK TO PROPERTY

Qualitative Risk		Significance - Geotechnical engineering requirements		
Very high	VH	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low. May be too expensive and not practical. Work likely to cost more than the value of the property.		
High	н	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to acceptable level. Work would cost a substantial sum in relation to the value of the property.		
Moderate	М	May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as possible.		
Low	L	Usually acceptable to regulators. Where treatment has been needed to reduce the risk to this level, ongoing maintenance is required.		
Very Low	VL	Acceptable. Manage by normal slope maintenance procedures.		

Risk to Life

Most of us have some difficulty grappling with the concept of risk and deciding whether, or not, we are prepared to accept it. However, without doing any sort of analysis, or commissioning a report from an "expert", we all take risks every day. One of them is the risk of being killed in an accident. This is worth thinking about, because it tells us a lot about ourselves and can help to put an assessed risk into a meaningful context. By identifying activities that we either are, or are not, prepared to engage in we can get some indication of the maximum level of risk that we are prepared to take. This knowledge can help us to decide whether we really are able to accept a particular risk, or to tolerate a particular likelihood of loss, or damage, to our property (Table 2).

In Table 3, data from NSW for the years 1998 to 2002, and other sources, is presented. A risk of 1 in 100,000 means that, in any one year, 1 person is killed for every 100,000 people undertaking that particular activity. The NSW data assumes that the whole population undertakes the activity. That is, we are all at risk of being killed in a fire, or of choking on our food, but it is reasonable to assume that only people who go deep sea fishing run a risk of being killed while doing it.

It can be seen that the risks of dying as a result of falling, using a motor vehicle, or engaging in waterrelated activities (including bathing) are all greater than 1:100,000 and yet few people actively avoid situations where these risks are present. Some people are averse to flying and yet it represents a lower risk than choking to death on food. Importantly, the data also indicate that, even when the risk of dying as a consequence of a particular event is very small, it could still happen to any one of us any day. If this were not so, no one would ever be struck by lightning.

Most local councils and planning authorities that stipulate a tolerable risk to property also stipulate a tolerable risk to life. The AGS Practice Note Guideline recommends that 1:100,000 is tolerable in newly developed areas, where works can be carried out as part of the development to limit risk. The tolerable level is raised to 1:10,000 in established areas, where specific landslide hazards may have existed for many years. The distinction is deliberate and intended to prevent the concept of landslide risk management, for its own sake, becoming an unreasonable financial burden on existing communities. Acceptable risk is usually taken to be one tenth of the tolerable risk (1:1,000,000 for new developments and 1:100,000 for established areas) and efforts should be made to attain these where it is practicable and financially realistic to do so.

TABI F	3:	RISK	то	LIFE
IADEE	σ.	111011		

Risk (deaths per participant per year)	Activity/Event Leading to Death (NSW data unless noted)
1:1,000	Deep sea fishing (UK)
1:1,000 to 1:10,000	Motor cycling, horse riding , ultra-light flying (Canada)
1:23,000	Motor vehicle use
1:30,000	Fall
1:70,000	Drowning
1:180,000	Fire/burn
1:660,000	Choking on food
1:1,000,000	Scheduled airlines (Canada)
1:2,300,000	Train travel
1:32,000,000	Lightning strike

More information relevant to your particular situation may be found in other AUSTRALIAN GEOGUIDES:

•	GeoGuide LR1	- Introduction	
•	GeoGuide I R2	- Landslides	

- GeoGuide LR3 Landslides in Soil
- GeoGuide LR4 Landslides in Rock
- GeoGuide LR5 Water & Drainage
- GeoGuide LR9 Effluent & Surface Water Disposal GeoGuide LR10 - Coastal Landslides
 - GeoGuide LR10 Coastal Landslide
 GeoGuide LR11 Record Keeping

GeoGuide LR6 - Retaining Walls GeoGuide LR8 - Hillside Construction

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX G - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

GOOD ENGINEERING PRACTICE

POOR ENGINEERING PRACTICE

ADVICE		
GEOTECHNICAL	Obtain advice from a qualified, experienced geotechnical practitioner at early	Prepare detailed plan and start site works before
ASSESSMENT	stage of planning and before site works.	geotechnical advice.
PLANNING	TY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk arising from the identified bazards and consequences in mind	Plan development without regard for the Risk.
DESIGN AND CONS	STRUCTION	
	Use flexible structures which incorporate properly designed brickwork, timber	Floor plans which require extensive cutting and
HOUSE DESIGN	or steel frames, timber or panel cladding.	filling.
HOUSE DESIGN	Consider use of split levels.	Movement intolerant structures.
SITE CLEADING	Use decks for recreational areas where appropriate.	Indiscriminately clear the site
ACCESS &	Satisfy requirements below for cuts, fills, retaining walls and drainage.	Excavate and fill for site access before
DRIVEWAYS	Council specifications for grades may need to be modified.	geotechnical advice.
	Driveways and parking areas may need to be fully supported on piers.	
EARTHWORKS	Retain natural contours wherever possible.	Indiscriminatory bulk earthworks.
CUTS	Minimise depth.	Large scale cuts and benching.
0015	Provide drainage measures and erosion control.	Ignore drainage requirements
	Minimise height.	Loose or poorly compacted fill, which if it fails,
	Strip vegetation and topsoil and key into natural slopes prior to filling.	may flow a considerable distance including
Ente	Use clean fill materials and compact to engineering standards.	onto property below.
FILLS	Provide surface drainage and appropriate subsurface drainage.	Fill over existing vegetation and topsoil.
	······································	Include stumps, trees, vegetation, topsoil,
		boulders, building rubble etc in fill.
ROCK OUTCROPS	Remove or stabilise boulders which may have unacceptable risk.	Disturb or undercut detached blocks or
& BOULDERS	Engineer design to resist applied soil and water forces	Construct a structurally inadequate wall such as
DETAINING	Found on rock where practicable.	sandstone flagging, brick or unreinforced
WALLS	Provide subsurface drainage within wall backfill and surface drainage on slope	blockwork.
WILLD	above.	Lack of subsurface drains and weepholes.
	Construct wall as soon as possible after cut/fill operation.	Found on topsoil loose fill detached houlders
FOOTNICS	Use rows of piers or strip footings oriented up and down slope.	or undercut cliffs.
FOOTINGS	Design for lateral creep pressures if necessary.	
	Backfill footing excavations to exclude ingress of surface water.	
	Engineer designed. Support on piers to rock where practicable	
SWIMMING POOLS	Provide with under-drainage and gravity drain outlet where practicable.	
	Design for high soil pressures which may develop on uphill side whilst there	
DD I DVI GE	may be little or no lateral support on downhill side.	
DRAINAGE	Provide at tons of cut and fill slones	Discharge at top of fills and cuts
	Discharge to street drainage or natural water courses.	Allow water to pond on bench areas.
SURFACE	Provide general falls to prevent blockage by siltation and incorporate silt traps.	1.
	Line to minimise infiltration and make flexible where possible.	
	Special structures to dissipate energy at changes of slope and/or direction.	Discharge roof runoff into absorption tranches
G	Provide drain behind retaining walls.	Discharge roof funori into absorption denenes.
SUBSURFACE	Use flexible pipelines with access for maintenance.	
	Prevent inflow of surface water.	
SEPTIC &	Usually requires pump-out or mains sewer systems; absorption trenches may	Discharge sullage directly onto and into slopes.
SULLAGE	Storage tanks should be water-tight and adequately founded.	of landslide risk.
EROSION	Control erosion as this may lead to instability.	Failure to observe earthworks and drainage
CONTROL &	Revegetate cleared area.	recommendations when landscaping.
LANDSCAPING	TE VISITS DUDING CONCEPTION	
DRAWINGS AND S	Building Application drawings should be viewed by geotechnical consultant	
SITE VISITS	Site Visits by consultant may be appropriate during construction/	
INSPECTION AND	MAINTENANCE BY OWNER	
OWNER'S	Clean drainage systems; repair broken joints in drains and leaks in supply	
RESPONSIBILITY	pipes.	
	Where structural distress is evident see advice.	
	In seepage observed, determine causes of seek advice on conseduences.	

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

EXAMPLES OF **POOR** HILLSIDE PRACTICE

Appendix 3

Hydraulic Assessment Report (Version 1.3) (by Floodworks)

68 GRANUAILLE CRESCENT, BANGALOW, NSW HYDRAULIC ASSESSMENT Instant Steel Pty Ltd

Contact us to design the sustainable towns and cities of tomorrow.

FLOODWORKS

FLOODWORKS Lismore NSW m +61 474 793 362 e derek.mackenzie@floodworks.com.au www.floodworks.com.au Our Ref: FW00007 Date: 21 June 2022

Version 1.3

Important Note

This report and all its components (including images, audio, video, text) is copyright. Apart from fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical or graphic) without the prior written permission of the Floodworks.

This report has been prepared for the sole use the client, for a specific site (herein 'the site') the specific purpose specified in Section 1 of this report (herein 'the purpose'). This report is strictly limited for use by the client, to the purpose and site and may not be used for any other purposes.

Third parties, excluding regulatory agencies assessing an application in relation to the purpose, may not rely on this report. Floodworks waives all liability to any third party loss, damage, liability or claim arising out of or incidental to a third party publishing, using or relying on the facts, content, opinions or subject matter contained in this report.

Floodworks waives all responsibility for loss or damage where the accuracy and effectiveness of information provided by the Client or other third parties was inaccurate or not up to date and was relied upon, wholly or in part in reporting.

The Trustee for Engineering and Environmental Services Trading as FloodWorks ABN 57 619 124 369 PO Box 823 Lismore NSW 2480

T 0474 793 362 | office@floodworks.com.au

Version Register

Version	Status	Author	Reviewer	Change from	Authorised for	Release
					Signature	Date
-	Draft	ТР	DM		D. Machengie	18/10/19
1.0	For Issue	ТР	DM		D. Machengie	25/11/19
1.1	For Issue	ТР	DM	Change to Lot Description	D. Machengie	19/03/20
1.2	For Issue	ТР	DM	Change to lot boundary	D. Machengie	02/04/20
1.3	For Issue	ТР	DM	Removal of Lot182 DP1000507	D. Machengie	21/06/22

Transmission Register

Controlled copies of this document are issued to the persons/companies listed below. Any copy of this report held by persons not listed in this register is deemed uncontrolled. Updated versions of this report if issued will be released to all parties listed below via the email address listed.

Name	Email Address
Max Campbell	mca79997@hotmail.com

Table of Contents

1.	Intro	5	
2.	Hydrology		
	2.1.	Methodology	7
	2.2.	Hydrologic Model	7
		2.2.1. Configuration	7
		2.2.2. Hydrologic Routing	8
		2.2.3. Manning's Roughness	9
		2.2.4. Rainfall Losses	9
		2.2.5. Existing Conditions Parameters	9
	2.3.	ARR 2019 Hydrologic Results	9
	2.4.	Flood Frequency Analysis Comparison	10
3.	Overland Flow Hydraulic Assessment		12
	3.1.	Objectives	12
	3.2.	2D Model Set Up	12
		3.2.1. Model Extent	12
		3.2.2. Resolution and Time Step	13
		3.2.3. Topography Pre-Development	14
		3.2.4. Roughness	15
		3.2.5. Inflows	16
		3.2.6. Rail Bridge	16
	3.3.	Existing Case	16
4.	Summary		
5.	References		

Figures

Figure 1 Subject Site	6
Figure 2 XP-SWMM Model Extents	8
Figure 3 1%AEP Box and whisker plot of Ensemble results	10
Figure 4 TUFLOW Model Extents	13
Figure 5 Surface Elevation Data	14
Figure 6 Pre Development Roughness Map	15
Figure 7 ARR2019 Combined Hazard Curves	16
Figure 8 Existing Maximum Water Level – 1%AEP	17
Figure 9 Existing Maximum Depth – 1%AEP	18
Figure 10 Existing Maximum Velocity – 1%AEP	19
Figure 11 Existing Maximum Flood Hazard – 1%AEP	20
Figure 12 1%AEP Box and whisker plot of Ensemble results	27

Tables

Table 1 XP-SWMM Hydrologic Model Parameters	9
Table 2 XP-SWMM and RFFE Peak Discharge	11

1. Introduction

Instant Steel Pty Ltd has requested a hydraulic assessment as part of a proposed Subdivision Development Application for 68 Granuaille Crescent, Bangalow, Lot 261 DP 1262316, Lot 11DP 807867 (the subject site).

The hydraulic assessment will cover the existing case and will determine the flooded extents of the subject creek. Additional information will include velocity, peak depth and hazard assessment.

The key objectives of the project are:

- Reduce flood risk where possible;
- Develop a Hydrology model of the catchment to Australian Rainfall and Runoff (ARR2019) methodology;
- Calibrate model to Regional Flood Frequency Estimation Tool (RFFE) and anecdotal data;
- Construct a base case 1D/2D Tuflow Hydraulic model of the subject site to ARR2019;
- A 1% AEP (100 year ARI) hydraulics assessment will be undertaken to determine the flooded extents of the subject creek. Additional information will include velocity, peak depth and hazard assessment.

The principal objective of this hydraulic assessment is to identify existing maximum water levels, maximum depths, maximum hazards and maximum velocities for the subject site. Detailed 1D/2D modelling has been undertaken to confirm the above objectives.

See Figure 1 below showing the location of the study site. The land area of the subject site is approximately 4.1ha, with a temporal creek running north to south through the eastern portion of the subject site.

Figure 1 Subject Site

2. Hydrology

2.1. Methodology

The XP-SWMM runoff-routing model has been used to estimate design flood discharges within the study area. The model represents the sub-catchments as a network of nodes linked to either the 1D pipe drainage network or the 2D Digital Terrain Model (DTM) geometric base. The node is defined by its pervious and impervious areas, fraction impervious and average catchment slope. The net rainfall is routed through the network after appropriate losses (initial and continuing) and roughness factors are applied, resulting in a surface runoff hydrograph for each sub-catchment.

The XP-SWMM model was used to estimate the 1% AEP design runoff as per Instant Steel Pty Ltd requirements. All hydrologic assessment has been completed to the Australian Rainfall and Runoff 2019 (ARR2019) methodologies.

A numerical check has been undertaken using the Regional Flood Frequency Estimation model (<u>https://rffe.arr-software.org/</u>) and compared to the XP-SWMM results.

2.2. Hydrologic Model

2.2.1.Configuration

Figure 2 illustrates the extent of the XP-SWMM model. There are 6 catchments (total area is 63.664Ha) used to represent the runoff that contributes to the hydraulic function of the subject site. These catchments were delineated to accurately represent the inflow location and its impact on the subject site.

Figure 2 XP-SWMM Model Extents

2.2.2. Hydrologic Routing

Hydrologic modelling has been undertaken using the Laurenson runoff routing method. The Laurenson method requires the catchment to be divided into a pervious (undeveloped) and an impervious (developed) portion. A fraction impervious of 0% has been applied to the undeveloped portion and 100% to the developed portion.

2.2.3. Manning's Roughness

Manning's roughness (n) values is applied to represent the undeveloped and developed portions of the catchment. XP-SWMM allows a range to be applied to represent the varied degree of roughness that could be expected within the catchment.

The manning value used in this model was used as a calibration tool to compare peak flow from XP_SWMM and the ARR Regional Flood Frequency Estimation (RFFE) model.

2.2.4. Rainfall Losses

Initial Loss (IL) and Continuing Losses (CL) were sourced from the Australian Rainfall and Runoff (ARR) Data Hub (<u>http://data.arr-software.org/</u>) and were applied to the modelling. The catchment has been modelled as approximately 100% pervious with only a small percentage of roofed area relative to the catchment size. The following loss rates have been adopted:

Undeveloped Catchment IL = 12.1mm CL = 0.0mm/hr.

2.2.5. Existing Conditions Parameters

Table 1 summarises the XP-SWMM parameters adopted for the existing catchment conditions. The catchments equal area slope was calculated directly from the Digital Terrain Model for the Catchment.

The percentage impervious was determined using Queensland Urban Drainage Manual (QUDM) guidelines for fraction impervious for a Rural Undeveloped as 0% Impervious (QUDM, 2013).

The total contributing catchment is 63.664Ha. The hydrologic factors adopted have been summarised in Table 1.

Sub-Catchment	Area (Ha)	Impervious (Ha)	Pervious Area (Ha)	Equal Area Slope (%)
CAT_01	27.964	0.805	27.159	27.964
CAT_02	14.464	0.044	14.420	14.464
CAT_03	11.620	3.198	8.423	11.620
CAT_04	1.637	0.046	1.591	1.637
CAT_05	2.798	0.055	2.743	2.798
CAT_06	5.181	0.550	4.631	5.181

Table 1 XP-SWMM Hydrologic Model Parameters

2.3. ARR 2019 Hydrologic Results

The XP-SWMM ARR Storm Generator allows importation of the ARR Data Hub information, including rainfall global database, infiltration global database, and global storm definitions, into XP-SWMM. Information such as the ARR Data Hub Text File, ARR Temporal Patterns Increments File, and Bureau

of Meteorology (BOM) IFD table files are used to produce the Annual Exceedance Probability (AEP) and all of the durations for the given location, which are then analysed in the application.

Ten (10) temporal patterns were assessed per duration for each design event with the results statistically assessed using a box and whisker plot to determine the critical storm duration and temporal pattern for the catchment. The box and whisker plot displays' information about the range, median, and quartiles of the results. This plot can easily demonstrate whether a distribution is skewed and whether there are potential outliers in the data set, especially for a large number of observations.

Figure 3 below demonstrates that the highest median storm duration for the 1%AEP, or the 1% Annual Exceedance Probability (AEP) design event, is the 2Hr storm using the standard temporal pattern 10, and producing a peak discharge of **19.00** m³/s.

Figure 3 1%AEP Box and whisker plot of Ensemble results

2.4. Flood Frequency Analysis Comparison

ARR Regional Flood Frequency Estimation (RFFE) model has replaced the rational method as a means to compare XPSWMM's calculation of design discharges for the 1%AEP developed conditions at legal points of discharge for the catchment.

The tool requires the geographical coordinates of the catchment centroid and outlet. Based on regional rainfall data at gauged locations near the site the tool produces a statistical estimate of the peak discharge.

The tool has the following limitations:

- The RFFE tool cannot be used for urban catchments, areas where large scale land clearing has occurred or where Dams or other significant Hydraulic controls have significantly affected the natural hydrology (ARR).
- RFFE is not accurate for catchments smaller than 0.5 km² or larger than 1000 km².
- Catchments that are located more than 300 km from a gauging station used by the tool.

Table 2 and Figure summarises the comparison of the RFFA tool and XP-SWMM peak discharges for the sub-catchment at outlet.

	Regional Estimation Tool			
Event	Discharge (m3/s)	Lower Confidence Limit (5%) (m3/s)	Upper Confidence Limit (95%) (m3/s)	XP_SWMM (ARR2019)
1%AEP	15.4	4.63	51.0	19.00

Table 2 XP-SWMM and RFFE Peak Discharge

* Based off Medium Ensemble Storm

Figure 4 Critical Storm Duration And Temporal Pattern For The Outlet Catchment

3. **Overland Flow Hydraulic Assessment**

3.1. Objectives

The objective of this overland flow assessment is to demonstrate that the proposed pad does not significantly increase risk within the floodway.

1D/2D TUFLOW has been used for this analysis. The TUFLOW software models the design terrain (i.e. Digital Terrain Model) of the study area as a series of grid points (2D cells). This allows flows in excess of channel capacity or pipe network, to break out and continue along the floodway in the 2D domain, as the topography dictates. The hydraulic structures (i.e. the minor culvert network) have been represented as 1D elements (ESTRY) which is dynamically linked to the 2D elements. The TUFLOW model computes the capacity of the 1D element and once exceeded, the surcharged flow is transferred to the 2D model. Flood levels, discharge and velocity can be extracted from the model as functions of time at required locations.

TUFLOW is an industry standard two-dimensional river analysis model used to estimate flood characteristics such as flood level, velocity and flood depth and any impacts arising from the proposed development has on the surrounding properties.

3.2. 2D Model Set Up

3.2.1. Model Extent

The model extents for the TUFLOW model is presented in Figure 4. The extents were set at an appropriate distance from the subject site. Downstream boundary will be normal depth at the railway bridge.

Figure 4 TUFLOW Model Extents

3.2.2. Resolution and Time Step

A grid size of 2m and time step 1s were used in the TUFLOW model for all scenarios. The grid size is based on model efficiency and size constraints for the extents of the model.

3.2.3.Topography Pre-Development

Lidar 1m (2010) data around the subject site were used as the base topography for TUFLOW model. The topography used in the pre-development scenario is shown in Figure 5.

Figure 5 Surface Elevation Data

3.2.4. Roughness

Figure 6 show the roughness adopted in the hydraulic impact assessment model.

Figure 6 Pre Development Roughness Map

3.2.5.Inflows

The inflows within the TUFLOW model were extracted directly from XPSWMM Hydrology model (ARR2019). See Figure 5 for inflows location.

3.2.6. Rail Bridge

The rail bridge at the downstream boundary was presented by modifying topography to achieve 14.7m bridge opening.

3.3. Existing Case

The existing case includes culvert survey under Hinterland Way (see Figure 5). The pipe roughness was set at Manning n = 0.013.

The 1%AEP design event peak water level, depth, velocity and hazard are shown in Figure 8, Figure 9, Figure 10 and Figure 11 below in respectively.

Within the subject site boundary, peak water level is approximately 47.5mAHD.

Peak water depth at site is 2.0 m, and peak velocity is 1 - 1.2m/s within the creek area.

Flood hazard ranges from H1 to H3 (see Figure 7 below), with H4 Hazard confined within the centre creek area (see Figure 11).

Figure 7 ARR2019 Combined Hazard Curves

Figure 8 Existing Maximum Water Level – 1%AEP

Figure 9 Existing Maximum Depth – 1%AEP

Figure 10 Existing Maximum Velocity – 1%AEP

Figure 11 Existing Maximum Flood Hazard – 1%AEP

4. Summary

Floodworks have completed a Hydraulic Impact Assessment for the subject site 68 Granuaille Crescent, Bangalow, NSW.

In summary, the completed Flood Impact Assessment (FIA) concludes the following:

- The XPSWMM model was used to estimate the 1%AEP design runoff for Tuflow model input. All hydrologic assessment has been completed to the Australian Rainfall and Runoff 2019 (ARR2019) methodologies. The XP-SWMM results compared well with Regional Flood Frequency Estimation model
- A fully dynamic 1D/2D linked TUFLOW flood model was developed for the existing and developed cases
- TUFLOW model results indicate the flooded extents of the subject creek. Additional information include velocity, peak depth and hazard assessment
- The 1% AEP design event
 - Peak water level is 47.5mAHD
 - Peak water depth is 2.02 m
 - Peak velocity is 1 1.2m/s
 - Flood hazard ranges from H1 to H3, with H4 Hazard confined within the centre creek
- The Flood Planning Level will be 48m AHD (47.5m AHD + 0.5m Freeboard = 48.0m AHD)

5. References

- BOM (2018) Rainfall IFD Data System
- IPWEA 2013, Queensland Urban Development Manual (QUDM)
- Ball J, Babister M, Nathan R, Weeks W, Weinmann E, Retallick M, Testoni I, (Editors), 2019, Australian Rainfall and Runoff: A Guide to Flood Estimation, Commonwealth of Australia
- Elevation Foundation Spatial Data from http://elevation.fsdf.org.au/

Appendix A 1%AEP Tuflow's Results

FIG 01 PRE- DEVELOPMENT TUFLOW MODEL FEATURE

PROJECTION: GDA94 / MGA ZONE 56 PROJECT: 68 Granuaille Crescent, Bangalow DATE: June 2022

FIG 02 PRE- DEVELOPMENT TUFLOW MODEL MANNING MAP

PROJECTION: GDA94 / MGA ZONE 56 PROJECT: FW00007 68 Granuaille Crescent, Bangalow DATE: June 2022

Appendix B Australian Rainfall & Runoff Data Hub – Results

River Region

Division	South East Coast (NSW)	
River Number	3	
River Name	Richmond River	

ARF Parameters

$$egin{aligned} ARF &= Min \left\{ 1, \left[1 - a \left(Area^b - c \log_{10} Duration
ight) Duration^{-d}
ight. \ &+ eArea^f Duration^g \left(0.3 + \log_{10} AEP
ight)
ight. \ &+ h 10^{iArea rac{Duration}{1440}} \left(0.3 + \log_{10} AEP
ight)
ight]
ight\} \end{aligned}$$

Zone	a	b	c	d	e	Ť	g	h	1	
East Coast North	0.327	0.241	0 448	0.36	0.00096	0.48	-0.21	0.012	-0.0013	

Short Duration ARF

$$\begin{split} ARF &= Min \left[1, 1 - 0.287 \left(Area^{0.265} - 0.439 \text{log}_{10}(Duration) \right) . Duration^{-0.36} \\ &+ 2.26 \text{ x } 10^{-3} \text{ x } Area^{0.226} . Duration^{0.125} \left(0.3 + \log_{10}(AEP) \right) \\ &+ 0.0141 \text{ x } Area^{0.213} \text{ x } 10^{-0.021 \frac{(Duration - 180)^2}{1440}} \left(0.3 + \log_{10}(AEP) \right) \right] \end{split}$$

Storm Losses

Note: Burst Loss = Storm Loss - Preburst

Note: These losses are only for rural use and are NOT FOR DIRECT USE in urban areas

Note: As this point is in NSW the advice provided on losses and pre-burst on the NSW Specific Tab of the ARR Data Hub is to be considered. In NSW losses are derived considering a hierarchy of approaches depending on the available loss information. The continuing storm loss information from the ARR Datahub provided below should only be used where relevant under the loss hierarchy (level 5) and where used is to be multiplied by the factor of 0.4.

ID	2345.0
Storm Initial Losses (mm)	44.0
Storm Continuing Losses (mm/h)	2.1

	RCP 4.5	RCP6	RCP 8.5
2030	0.869 (4.3%)	0.783 (3.9%)	0.983 (4.9%)
2040	1.057 (5.3%)	1.014 (5.1%)	1.349 (6.8%)
2050	1.272 (6.4%)	1.236 (6.2%)	1.773 (9.0%)
2060	1.488 (7.5%)	1.458 (7.4%)	2.237 (11.5%)
2070	1.676 (8.5%)	1.691 (8.6%)	2.722 (14.2%)
2080	1.810 (9.2%)	1.944 (9.9%)	3.209 (16.9%)
2090	1.862 (9.5%)	2.227 (11.5%)	3.679 (19.7%)

Interim Climate Change Factors

Probability Neutral Burst Initial Loss

min (h)\AEP(%)	50	20	10	5	2	1
60 (1.0)	24.2	13.2	12.3	12.0	10.8	7.7
90 (1.5)	25.1	14.7	13.3	12.0	10.2	8.3
120 (2.0)	22.4	13.4	13.0	11.1	10.3	6.1
180 (3.0)	21.9	13.7	12.6	10.2	9.6	5.2
360 (6.0)	19.9	12.8	12.2	10.9	11.1	3.5
720 (12.0)	21.9	15.3	15.0	12.2	13.8	4.5
1080 (18.0)	25.8	19.1	19.6	14.9	16.7	5.4
1440 (24.0)	29.9	21.7	21.4	16.5	14.3	5.9
2160 (36.0)	35.3	26.4	24.8	19.6	17.9	6.2
2880 (48.0)	37.4	27.7	26.6	23.7	23.2	7.0
4320 (72.0)	42.3	32.6	32.1	29.6	27.3	11.7

Box and Whisker Plots

Figure 12 1%AEP Box and whisker plot of Ensemble results

Appendix C Regional Flood Frequency Estimation (ARR2019)

AEP (%)	Discharge (m ³ /s)	Lower Confidence Limit (5%) (m ³ /s)	Upper Confidence Limit (95%) (m ³ /s)
50	3.10	1.31	7.28
20	5.44	2.40	12.4
10	7.37	3.06	17.9
5	9.49	3.60	24.9
2	12.7	4.21	38.0
1	15.4	4.63	51.0

Statistics

Variable Value Standard Dev		Correlation				
Mean	1.115	0.529	1.000			
Standard Dev	0.642	0.303	-0.330	1.000		
Skew	0.074	0.029	0.170	-0.280	1.000	

Note: These statistics come from the nearest gauged catchment. Details.

Note: These statistics are common to each region. Details.

Shape Factor vs Catchment Area

Bias Correction Factor vs Catchment Area

